
机器学习笔记
文章平均质量分 79
城谷忠臣
这个作者很懒,什么都没留下…
展开
-
【API-KNN回归】sklearn.neighbors.KNeighborsRegressor()相关
是 Scikit-learn 中基于 K 近邻(K-Nearest Neighbors, KNN)算法的回归模型。原创 2025-04-16 17:04:11 · 424 阅读 · 0 评论 -
【API-线性回归-LinearRegression】sklearn.linear_model.LinearRegression()相关
是 Scikit-learn 中用于普通最小二乘线性回归的模型。原创 2025-04-16 18:31:14 · 235 阅读 · 0 评论 -
【API-KNN分类】sklearn.neighbors.KNeighborsClassifier()相关
【代码】【API-KNN分类】sklearn.neighbors.KNeighborsClassifier()相关。原创 2025-04-15 20:50:23 · 524 阅读 · 0 评论 -
【API-线性回归-SGDRegressor】 sklearn.linear_model.SGDRegressor()相关
是 Scikit-learn 中基于随机梯度下降(Stochastic Gradient Descent, SGD)的线性回归模型,适用于大规模数据和高维特征。原创 2025-04-16 18:35:43 · 384 阅读 · 0 评论 -
【Digit Recognizer】train_test_split 中使用 stratify ,保持数据划分后训练集和测试集的类别分布与原数据集一致
这在类别不平衡(Class Imbalance)的场景下尤为重要,例如手写数字识别(MNIST)中某些数字的样本可能较少(如数字。可以确保划分后的子集保留原始数据的类别比例,避免模型因训练集或测试集分布偏差而表现异常。可能无法严格分层(因无法拆分为训练集和测试集),此时会抛出警告或错误。如果某个类别的样本数过少(例如某类仅有1个样本),的类别分布进行分层抽样。原创 2025-04-07 15:35:49 · 395 阅读 · 0 评论 -
【Digit Recognizer】特征和标签提取,划分训练集时train_test_split 可以直接接受 DataFrame 输入,但转换为 NumPy 数组更通用
在使用 Pandas 读取 CSV 文件后,正确提取特征(X)和标签(y)并传递给假设手写数字识别数据集(如labelpixel_0pixel_783标签位于 DataFrame 的第一列(列索引0特征为除标签列外的所有列(列索引。原创 2025-04-07 14:51:46 · 333 阅读 · 1 评论