【API-KNN回归】sklearn.neighbors.KNeighborsRegressor()相关

sklearn.neighbors.KNeighborsRegressor() 是 Scikit-learn 中基于 K 近邻(K-Nearest Neighbors, KNN)算法的回归模型。以下是其核心参数的详细解释及使用建议:


核心参数解析

1. n_neighbors
  • 作用:选择用于预测的邻居数量(K 值)。
  • 取值范围:正整数(默认值 5)。
  • 影响
    • K 值较小:模型对局部特征敏感(容易过拟合,噪声敏感)。
    • K 值较大:模型更平滑(可能欠拟合,忽略细节)。
  • 调优建议:通过交叉验证选择(如 GridSearchCV),范围通常为 1~20

2. weights
  • 作用:定义邻居的权重计算方式。
  • 可选值
    • 'uniform'(默认):所有邻居的权重相等。
    • 'distance':权重与距离成反比(距离越近的邻居影响越大)。
  • 示例
    model = KNeighborsRegressor(weights='distance')  # 距离加权回归
    

3. algorithm
  • 作用:指定用于快速搜索邻居的算法。
  • 可选值
    • 'auto'(默认):自动根据数据选择最优算法。
    • 'ball_tree':基于 Ball Tree 结构的搜索(适合高维稀疏数据)。
    • 'kd_tree':基于 KD Tree 结构的搜索(适合低维数据)。
    • 'brute':暴力搜索(适合小数据集)。
  • 选择依据:数据规模、特征维度、稀疏性。

4. leaf_size
  • 作用:控制 Ball Tree 或 KD Tree 的叶子节点大小,影响树构建和查询速度。
  • 取值范围:正整数(默认值 30)。
  • 建议:通常无需调整,除非对性能有极端要求。

5. p
  • 作用:定义距离度量中的幂参数(仅对 metric='minkowski' 有效)。
  • 可选值
    • p=1:曼哈顿距离(L1 范数)。
    • p=2(默认):欧氏距离(L2 范数)。
  • 示例
    model = KNeighborsRegressor(p=1)  # 使用曼哈顿距离
    

6. metric
  • 作用:定义距离度量方法。
  • 常用值
    • 'minkowski'(默认):闵可夫斯基距离(结合 p 参数)。
    • 'euclidean':欧氏距离(等价于 metric='minkowski', p=2)。
    • 'manhattan':曼哈顿距离(等价于 metric='minkowski', p=1)。
    • 'chebyshev':切比雪夫距离(各维度差值的最大值)。
    • 'cosine':余弦相似度。
  • 自定义距离:可传入函数(需满足距离函数的数学性质)。

7. metric_params
  • 作用:传递给自定义距离函数的额外参数(仅当 metric 为可调用函数时有效)。
  • 示例
    def custom_metric(x, y, param1, param2): 
        return ...
    
    model = KNeighborsRegressor(
        metric=custom_metric,
        metric_params={'param1': 1.0, 'param2': 0.5}
    )
    

8. n_jobs
  • 作用:设置并行计算的工作线程数。
  • 可选值
    • None(默认):单线程。
    • -1:使用所有 CPU 核心。
  • 适用场景:数据量较大时加速搜索。

参数调优建议

1. 基础调优流程
from sklearn.neighbors import KNeighborsRegressor
from sklearn.model_selection import GridSearchCV

param_grid = {
    'n_neighbors': [3, 5, 7, 10],
    'weights': ['uniform', 'distance'],
    'p': [1, 2]
}

model = KNeighborsRegressor()
grid = GridSearchCV(model, param_grid, cv=5)
grid.fit(X_train, y_train)
print("最优参数:", grid.best_params_)
2. 高维数据优化
  • 使用 algorithm='ball_tree'algorithm='kd_tree'
  • 降低 n_neighbors 以避免维度灾难。
3. 计算加速
  • 设置 n_jobs=-1 启用多线程。
  • 对数据归一化(如 StandardScaler)提升距离计算稳定性。

核心方法说明

方法功能
fit(X, y)训练模型
predict(X)返回预测值
score(X, y)计算 R² 分数(回归评估)
kneighbors(X)返回样本的 K 个邻居索引和距离

使用场景示例

  • 房价预测:根据房屋特征(面积、房间数)预测价格。
  • 用户评分预测:基于相似用户的历史评分预测目标用户的评分。
  • 传感器数据回归:根据传感器输入预测物理量(如温度、压力)。

注意事项

  1. 数据归一化:KNN 对特征尺度敏感,需提前标准化/归一化。
  2. 计算效率:数据量过大时,暴力搜索(algorithm='brute')性能较差,优先选择树结构算法。
  3. 稀疏数据:高维稀疏数据(如文本 TF-IDF 向量)建议使用余弦距离。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值