【算法】矩阵中的最长递增路径 (记忆化dfs)

题目

给定一个 m x n 整数矩阵 matrix ,找出其中 最长递增路径 的长度。

对于每个单元格,你可以往上,下,左,右四个方向移动。 你 不能 在 对角线 方向上移动或移动到 边界外(即不允许环绕)。

示例 1:

img

输入:matrix = [[9,9,4],[6,6,8],[2,1,1]]
输出:4
解释:最长递增路径为 [1, 2, 6, 9]。
示例 2:

img

输入:matrix = [[3,4,5],[3,2,6],[2,2,1]]
输出:4
解释:最长递增路径是 [3, 4, 5, 6]。注意不允许在对角线方向上移动。
示例 3:

输入:matrix = [[1]]
输出:1

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 200
  • 0 <= matrix[i][j] <= 231 - 1

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-increasing-path-in-a-matrix

题解

首先很自然的想到使用dfs求解,但写完后发现超时,所以需要进一步考虑如何优化时间

发现每个格子的数字的最长递增路径是固定的,我们可以求解每个格子之后对结果进行记录,采取记忆化dfs的方式,之后经过记录过的格子无需dfs可直接取得结果。

实现

未采取记忆化的dfs

class Solution {
    private static final int[][] DIRECTIONS = new int[][]{{1,0},{0,1},{-1,0},{0,-1}};
    private int[][] matrix;
    private int rows, cols;

    public int longestIncreasingPath(int[][] matrix) {
        this.rows = matrix.length;
        if (rows == 0) return 0;
        this.cols = matrix[0].length;
        if (cols == 0) return 0;

        this.matrix = matrix;

        int max = Integer.MIN_VALUE;
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < cols; j++) {
                max = Math.max(max, dfs(i, j, 0));
            }
        }
        return max;
    }

    private int dfs(int x, int y, int sum) {

        sum++;
        int max = Integer.MIN_VALUE;
        boolean flag = false;
        for (int[] direction: DIRECTIONS) {
            int newX = x + direction[0];
            int newY = y + direction[1];
            if (inMap(newX, newY) && matrix[newX][newY] > matrix[x][y]) {
                flag = true;
                max = Math.max(max, dfs(newX, newY, sum));
            }
        }
        if (flag) return max;
        return sum;
    }

    private boolean inMap(int x, int y) {
        return x >= 0 && x < rows && y >= 0 && y <cols;
    }

}

记忆化dfs (自解)

class Solution {
    private static final int[][] DIRECTIONS = new int[][]{{1,0},{0,1},{-1,0},{0,-1}};
    private int[][] matrix;
    private int[][] marked;
    private int rows, cols;

    public int longestIncreasingPath(int[][] matrix) {
        this.rows = matrix.length;
        if (rows == 0) return 0;
        this.cols = matrix[0].length;
        if (cols == 0) return 0;

        this.matrix = matrix;
        this.marked = new int[rows][cols];

        int max = Integer.MIN_VALUE;
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < cols; j++) {
                max = Math.max(max, dfs(i, j));
            }
        }
        return max;
    }

    private int dfs(int x, int y) {

        int res = 1;
        int max = 0;
        for (int[] direction: DIRECTIONS) {
            int newX = x + direction[0];
            int newY = y + direction[1];
            if (inMap(newX, newY) && matrix[newX][newY] > matrix[x][y]) {
                int t;
                if (marked[newX][newY] != 0) {
                    t = marked[newX][newY];
                }else {
                    t = dfs(newX, newY);
                }
                max = Math.max(max, t);
            }
        }
        res += max;
        marked[x][y] = res;
        return res;
    }

    private boolean inMap(int x, int y) {
        return x >= 0 && x < rows && y >= 0 && y <cols;
    }

}

记忆化dfs (代码优化)

class Solution {
    private static final int[][] DIRECTIONS = new int[][]{{1,0},{0,1},{-1,0},{0,-1}};
    private int[][] matrix;
    private int[][] marked;
    private int rows, cols;

    public int longestIncreasingPath(int[][] matrix) {
        this.rows = matrix.length;
        if (rows == 0) return 0;
        this.cols = matrix[0].length;
        if (cols == 0) return 0;

        this.matrix = matrix;
        this.marked = new int[rows][cols];

        int max = Integer.MIN_VALUE;
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < cols; j++) {
                max = Math.max(max, dfs(i, j));
            }
        }
        return max;
    }

    private int dfs(int x, int y) {
        if (marked[x][y] != 0) {
            return marked[x][y];
        }

        marked[x][y] = 1;
        for (int[] direction: DIRECTIONS) {
            int newX = x + direction[0];
            int newY = y + direction[1];
            if (inMap(newX, newY) && matrix[newX][newY] > matrix[x][y]) {
                marked[x][y] = Math.max(marked[x][y], dfs(newX, newY) + 1);
            }
        }
        return marked[x][y];
    }

    private boolean inMap(int x, int y) {
        return x >= 0 && x < rows && y >= 0 && y <cols;
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lor :)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值