DataFrame.to_dict(orient='dict')
将DataFrame格式的数据转化成字典形式
参数:当然参数orient可以是字符串{'dict', 'list', 'series', 'split', 'records', 'index'}中的任意一种来决定字典中值的类型
字典dict(默认):类似于{列:{索引:值}}这样格式的字典
列表list:类似于{列:[值]}这种形式的字典
序列series:类似于{列:序列(值)}这种形式的字典
分解split:类似于{索引:[索引],列:[列],数据:[值]}这种形式的字典
记录records:类似于[{列:值},...,{列:值}]这种形式的列表
索引index:类似于{索引:{列:值}}这种形式的字典
在新版本0.17.0中,允许缩写,s表示序列,sp表示分裂
返回:结果:像{列:{索引:值}}这种形式的字典
"""
pandas.DataFrame.to_dict()的使用详解
"""
import pandas as pd
import numpy as np
df = pd.DataFrame({'col_id': [1, 2,3,4],'col_age': [15, 16,17,18],'col_name':['tony','keny','mark','tick']})
print(df)
df1 = df.to_dict(orient='dict')
print("1.字典dict(默认):类似于{列:{索引:值}}这样格式的字典:")
print(df1)
df2 = df.to_dict(orient='list')
print("2.列表list:类似于{列:[值]}这种形式的字典:")
print(df2)
df3 = df.to_dict(orient='series')
print("3.序列series:类似于{列:序列(值)}这种形式的字典:")
print(df3)
df4 = df.to_dict(orient='split')
print("4.分解split:类似于{索引:[索引],列:[列],数据:[值]}这种形式的字典:")
print(df4)
df5 = df.to_dict(orient='records')
print("5.记录records:类似于[{列:值},...,{列:值}]这种形式的列表:")
print(df5)
df6 = df.to_dict(orient='index')
print("6.索引index:类似于{索引:{列:值}}这种形式的字典:")
print(df6)