一个公式教你背会 矩形波导或圆波导(或者矩形或圆形谐振腔)以纵向分量为领矢得到全部的场表达式

看不懂的我抽空来补充完整
开心!!之前这个我一直没背下来,现在摸到石头边了



以纵向分量为领向矢量
[ E u E v H u H v ] = 1 K c 2 [ − γ 0 0 − j ω μ 0 − γ j ω μ 0 0 j ω ϵ − γ 0 − j ω ϵ 0 0 − γ ] [ ∂ E z h 1 ∂ u ∂ E z h 2 ∂ v ∂ H z h 1 ∂ u ∂ H z h 2 ∂ v ] \left[ \begin{array}{cccc} E_{u}\\ E_{v}\\ H_{u}\\ H_{v} \end{array} \right ]= \frac{1}{K_c^2} \left[ \begin{array}{cccc} -\gamma& 0 & 0 & {-j\omega\mu}\\ 0& -\gamma &j\omega \mu &0\\ 0& j\omega\epsilon &-\gamma&0 \\ -j\omega \epsilon& 0 &0 &-\gamma \end{array} \right ] \left[ \begin{array}{cccc} \frac{\partial E_z}{h_1\partial u}\\ \frac{\partial E_z}{h_2\partial v}\\ \frac{\partial H_z}{h_1\partial u} \\ \frac{\partial H_z}{h_2\partial v} \end{array} \right ] EuEvHuHv=Kc21γ00jωϵ0γjωϵ00jωμγ0jωμ00γh1uEzh2vEzh1uHzh2vHz

矩形波导的情况就是
u = x , v = y h 1 = 1 , h 2 = 1 u=x,\quad v=y\\ h_1=1,\quad h_2=1 u=x,v=yh1=1,h2=1
圆波导的情况就是
u = r , v = φ h 1 = 1 , h 2 = r u=r,\quad v=\varphi\\ h_1=1,\quad h_2=r u=r,v=φh1=1,h2=r

波导,纵向分量为领向矢量

矩形波导 T E m n TE_{mn} TEmn
H z = H 0 cos ⁡ ( m π a x ) cos ⁡ ( n π b y ) e − j β z E z = 0 H_z=H_0\cos(\frac{m\pi}{a}x)\cos(\frac{n\pi}{b}y)e^{-j\beta z}\\ E_z=0 Hz=H0cos(amπx)cos(bnπy)ejβzEz=0
矩形波导 T M m n TM_{mn} TMmn
E z = E 0 sin ⁡ ( m π a x ) sin ⁡ ( n π b y ) e − j β z H z = 0 E_z=E_0\sin(\frac{m\pi}{a}x)\sin(\frac{n\pi}{b}y)e^{-j\beta z}\\ H_z=0 Ez=E0sin(amπx)sin(bnπy)ejβzHz=0

圆波导 T E m n TE_{mn} TEmn
H z = H 0 J m ( K c r ) sin ⁡ ( m φ ) c o s ( m φ ) e − j β z E z = 0 H_z=H_0J_m(K_cr)\mathop{}\limits_{\sin(m\varphi)}^{cos(m\varphi)}e^{-j\beta z}\\ E_z=0 Hz=H0Jm(Kcr)sin(mφ)cos(mφ)ejβzEz=0

圆波导 T M m n TM_{mn} TMmn
E z = E 0 J m ( K c r ) sin ⁡ ( m φ ) c o s ( m φ ) e − j β z H z = 0 E_z=E_0J_m(K_cr)\mathop{}\limits_{\sin(m\varphi)}^{cos(m\varphi)}e^{-j\beta z}\\ H_z=0 Ez=E0Jm(Kcr)sin(mφ)cos(mφ)ejβzHz=0


如果是谐振腔的话公式也很像。
4个 − γ -\gamma γ都变成 ∂ ∂ z \frac{\partial}{\partial z} z

[ E u E v H u H v ] = 1 K c 2 [ ∂ ∂ z 0 0 − j ω μ 0 ∂ ∂ z j ω μ 0 0 j ω ϵ ∂ ∂ z 0 − j ω ϵ 0 0 ∂ ∂ z ] [ ∂ E z h 1 ∂ u ∂ E z h 2 ∂ v ∂ H z h 1 ∂ u ∂ H z h 2 ∂ v ] \left[ \begin{array}{cccc} E_{u}\\ E_{v}\\ H_{u}\\ H_{v} \end{array} \right ]= \frac{1}{K_c^2} \left[ \begin{array}{cccc} \frac{\partial}{\partial z}& 0 & 0 & {-j\omega\mu}\\ 0& \frac{\partial}{\partial z} &j\omega \mu &0\\ 0& j\omega\epsilon &\frac{\partial}{\partial z}&0 \\ -j\omega \epsilon& 0 &0 &\frac{\partial}{\partial z} \end{array} \right ] \left[ \begin{array}{cccc} \frac{\partial E_z}{h_1\partial u}\\ \frac{\partial E_z}{h_2\partial v}\\ \frac{\partial H_z}{h_1\partial u} \\ \frac{\partial H_z}{h_2\partial v} \end{array} \right ] EuEvHuHv=Kc21z00jωϵ0zjωϵ00jωμz0jωμ00zh1uEzh2vEzh1uHzh2vHz

谐振腔,纵向分量为领向矢量

矩形谐振腔, T M m n p TM_{mnp} TMmnp
E z = 2 E 0 sin ⁡ ( m π a x ) sin ⁡ ( n π b y ) cos ⁡ ( p π l z ) H z = 0 E_z=2E_0\sin(\frac{m\pi}{a}x)\sin(\frac{n\pi}{b}y)\cos(\frac{p\pi}{l}z)\\ H_z=0 Ez=2E0sin(amπx)sin(bnπy)cos(lpπz)Hz=0

矩形谐振腔, T E m n p TE_{mnp} TEmnp
H z = − 2 j H 0 cos ⁡ ( m π a x ) cos ⁡ ( n π b y ) sin ⁡ ( p π l z ) E z = 0 H_z=-2j H_0\cos(\frac{m\pi}{a}x)\cos(\frac{n\pi}{b}y)\sin(\frac{p\pi}{l}z)\\ E_z=0 Hz=2jH0cos(amπx)cos(bnπy)sin(lpπz)Ez=0

圆形谐振腔, T M m n p TM_{mnp} TMmnp
E z = 2 E 0 J m ( K c r ) sin ⁡ ( m φ ) c o s ( m φ ) cos ⁡ ( p π l z ) H z = 0 E_z=2E_0 J_m(K_c r)\mathop{}\limits_{\sin(m\varphi)}^{cos(m\varphi)}\cos(\frac{p\pi}{l}z)\\ H_z=0 Ez=2E0Jm(Kcr)sin(mφ)cos(mφ)cos(lpπz)Hz=0

圆形谐振腔, T E m n p TE_{mnp} TEmnp
H z = − 2 j H 0 J m ( K c r ) sin ⁡ ( m φ ) c o s ( m φ ) sin ⁡ ( p π l z ) E z = 0 H_z=-2j H_0 J_m(K_c r)\mathop{}\limits_{\sin(m\varphi)}^{cos(m\varphi)}\sin(\frac{p\pi}{l}z)\\ E_z=0 Hz=2jH0Jm(Kcr)sin(mφ)cos(mφ)sin(lpπz)Ez=0

其他的

另一个有意思的是Lorentz变换矩阵,虽然用的频率低,但是结构很漂亮
( x y z i c t ) = ( γ 0 0 i β γ 0 1 0 0 0 0 1 0 − i β γ 0 0 γ ) ( x ′ y ′ z ′ i c t ′ ) \left(\begin{array}{c} x \\ y \\ z \\ i c t \end{array}\right)=\left(\begin{array}{cccc} \gamma & 0 & 0 & i \beta \gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -i \beta \gamma & 0 & 0 & \gamma \end{array}\right)\left(\begin{array}{c} x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ i c t^{\prime} \end{array}\right) xyzict=γ00iβγ01000010iβγ00γxyzict
其中,
β : = u c , γ : = 1 1 − β 2 \beta:=\frac{u}{c}, \quad \gamma:=\frac{1}{\sqrt{1-\beta^{2}}} β:=cu,γ:=1β2 1
Lorentz矩阵是个正交矩阵, A − 1 = A T A^{-1}=A^T A1=AT

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值