R语言200习题训练(带答案)(十)——回归分析练习

文章介绍了使用R语言进行线性回归(包括简单和多元)的实例,涉及模型构建、解释、假设检验、预测及性能评估。同时涵盖了逻辑回归模型在二分类问题中的应用,讨论了模型选择、特征重要性和性能比较。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

此部分内容会每日更新,包括但不限于基础知识,进阶知识,数据处理,图表展示,数据分析实战,机器学习算法等~ !!!
本人统计学硕士在读,想在2024年完成sql、python、R语言、stata、matlab等软件的复盘和巩固,目前在做统计学知识和R语言的复习~
后续考虑出相关视频进行讲解说明,请大家持续点赞+收藏+关注哈,大家一起沟通交流~

3.1 回归分析习题

(1)简单线性回归模型的构建与解释

习题16:
题目:使用R语言构建一个简单的线性回归模型,并解释回归系数的含义。

答案:

# 假设我们有两个变量x和y,我们想要用x来预测y
x <- c(1, 2, 3, 4, 5)
y <- c(2, 3, 5, 7, 11)

# 使用lm()函数构建简单线性回归模型
model <- lm(y ~ x)
summary(model)

# 解释回归系数
# 回归系数(Intercept)表示当x=0时y的预测值
# 回归系数(x)表示当x增加1个单位时,y平均增加多少个单位

习题17:
题目:分析一个数据集,找出与目标变量最相关的自变量,并构建简单线性回归模型。

答案:

# 假设数据集为data.frame类型的df,target是目标变量
data(mtcars)  # 使用mtcars数据集作为示例
df <- mtcars
target <- df$mpg  # 假设mpg
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值