此部分内容会每日更新,包括但不限于基础知识,进阶知识,数据处理,图表展示,数据分析实战,机器学习算法等~ !!!
本人统计学硕士在读,想在2024年完成sql、python、R语言、stata、matlab等软件的复盘和巩固,目前在做统计学知识和R语言的复习~
后续考虑出相关视频进行讲解说明,请大家持续点赞+收藏+关注哈,大家一起沟通交流~
3.1 回归分析习题
(1)简单线性回归模型的构建与解释
习题16:
题目:使用R语言构建一个简单的线性回归模型,并解释回归系数的含义。
答案:
# 假设我们有两个变量x和y,我们想要用x来预测y
x <- c(1, 2, 3, 4, 5)
y <- c(2, 3, 5, 7, 11)
# 使用lm()函数构建简单线性回归模型
model <- lm(y ~ x)
summary(model)
# 解释回归系数
# 回归系数(Intercept)表示当x=0时y的预测值
# 回归系数(x)表示当x增加1个单位时,y平均增加多少个单位
习题17:
题目:分析一个数据集,找出与目标变量最相关的自变量,并构建简单线性回归模型。
答案:
# 假设数据集为data.frame类型的df,target是目标变量
data(mtcars) # 使用mtcars数据集作为示例
df <- mtcars
target <- df$mpg # 假设mpg