语义分割中单类别和多类别图片数据标注,以及灰度类别转换

                                                                                                     点击上方码农的后花园”,选择星标” 公众号

                                                                                                                     精选文章,第一时间送达

上期讲解了语义分割模型的基本架构和常用数据集,这期就讲解一下语义分割数据集的制作,追下去吧~

 

制作总体步骤:

1. 使用lableme对图片数据进行标注,生成对应图片的x.json文件。

2. 执行lableme下的内置函数labelme_json_to_dataset,依次手动生成图片对应的x_json文件(或者使用代码一次性处理生成)。

3. 对第二步生成文件夹中的文件进行处理,生成语义图片label.png。

4. 将语义图片转换为类别灰度图图片-最终训练标签文件。

 

一、文件目录结构:

 

 

 

二、正式开始制作

第一步:标注软件的安装

1.Anaconda Prompt中创建一个环境

conda create --name=labelImg python=3.6

2.激活进入刚建立的新环境,

conda activate labelImg

3.安装界面支持pyqt5包

pip install pyqt5 -i https://pypi.douban.com/simple/

4.下载安装labelme

pip install labelme -i https://pypi.douban.com/simple/

5.输入命令labelme,就可以启动程序进行数据标注

 

 

第二步:进行标注

A.单类别标注 - 即每一张图片上只有一个目标

【1】在命令行中输入命令 labelme,打开标注界面,然后打开要标注的图片所在的文件夹进行标注

Opendir “”Test_Image“” ->Create  polygons ->Save->Next Image

 

【2】所有图片标注完之后,标注文件以x.json形式文件进行保存,制作完成后放在目录的before文件夹下。

用VS2017可查看Json文件内容,包含信息为我们标注区域内每一个像素点的数据

 

【3】利用labelme的自带函数labelme_json_to_dataset手动依次将每个json文件格式转换为语义图片的数据。

1.c

评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值