点击上方“码农的后花园”,选择“星标” 公众号
精选文章,第一时间送达
上期讲解了语义分割模型的基本架构和常用数据集,这期就讲解一下语义分割数据集的制作,追下去吧~
制作总体步骤:
1. 使用lableme对图片数据进行标注,生成对应图片的x.json文件。
2. 执行lableme下的内置函数labelme_json_to_dataset,依次手动生成图片对应的x_json文件(或者使用代码一次性处理生成)。
3. 对第二步生成文件夹中的文件进行处理,生成语义图片label.png。
4. 将语义图片转换为类别灰度图图片-最终训练标签文件。
一、文件目录结构:
二、正式开始制作
第一步:标注软件的安装
1.Anaconda Prompt中创建一个环境
conda create --name=labelImg python=3.6
2.激活进入刚建立的新环境,
conda activate labelImg
3.安装界面支持pyqt5包
pip install pyqt5 -i https://pypi.douban.com/simple/
4.下载安装labelme
pip install labelme -i https://pypi.douban.com/simple/
5.输入命令labelme,就可以启动程序进行数据标注
第二步:进行标注
A.单类别标注 - 即每一张图片上只有一个目标
【1】在命令行中输入命令 labelme,打开标注界面,然后打开要标注的图片所在的文件夹进行标注
Opendir “”Test_Image“” ->Create polygons ->Save->Next Image
【2】所有图片标注完之后,标注文件以x.json形式文件进行保存,制作完成后放在目录的before文件夹下。
用VS2017可查看Json文件内容,包含信息为我们标注区域内每一个像素点的数据
【3】利用labelme的自带函数labelme_json_to_dataset手动依次将每个json文件格式转换为语义图片的数据。
1.c