各类空间与相关性质汇总
1.度量空间
度量空间的核心是定义了距离,拥有距离的空间叫做度量空间。这里指的包括各个点之间的距离,向量之间的距离,曲线之间的距离,函数之间的距离等。
定义
如果引入了函数 $\rho: \mathbb{M} \times \mathbb{M} \rightarrow \mathbb{R}^1$,则空间 $\mathbb{M}$ 称为度量的,它具有以下属性:
$\rho(u, v)=0 \Leftrightarrow u=v$;
$\rho(u, v)=\rho(v, u) \geqslant 0 \quad \forall u, v \in \mathbb{M}$; (对称且非负)
$\rho(u, v) \leqslant \rho(u, w)+\rho(w, v) \quad \forall u, v, w \in \mathbb{M}$。 (三角不等式)
这个函数 $\rho$ 被称为空间 $\mathbb{M}$ 中的**度量(метрикой)**或**距离(расстоянием)**。
通过度量空间,可以引入下面五个重要定义:
1.强收敛
如果 $\lim _{n \rightarrow \infty} \rho\left(u_n, u\right)=0$,度量空间 $\mathbb{M}$ 的元素序列 $\left{u_n\right}$ 与引入的度量 $\rho$ 被称为强收敛(сильно сходящейся) 到元素 $u \in \mathbb {M}$ 。
2.柯西序列
如果 $\lim _{\substack{m \rightarrow \infty \ n \rightarrow \infty}} \rho\left(u_m, u_n\right)=0$,则度量空间 $\mathbb{M}$ 的元素序列 $\left{u_n\right}$ 称为柯西序列(фундаментальной)。
3.完备性
度量空间 $\mathbb{M}$ 被称为完备的,若对于任意基本序列$\left{u_n\right}$存在一个元素 $u \in \mathbb{M}$,使得序列强收敛到它。 $\left(\lim _{n \rightarrow \infty} \rho\left(u_n, u\right)=0\right)$。
换而言之,集合中的元素取极限不超出此空间称其具有完备性。
对于完备性可以举几个例子:有一个有理数组成的一个集合 {1, 1.4, 1.41, 1.414, 1.4142…},