最优化方法1——各类拓扑空间与强弱紧集、下半收敛问题

各类空间与相关性质汇总

1.度量空间

度量空间的核心是定义了距离,拥有距离的空间叫做度量空间。这里指的包括各个点之间的距离,向量之间的距离,曲线之间的距离,函数之间的距离等。

定义

如果引入了函数 $\rho: \mathbb{M} \times \mathbb{M} \rightarrow \mathbb{R}^1$,则空间 $\mathbb{M}$ 称为度量的,它具有以下属性:

  1. $\rho(u, v)=0 \Leftrightarrow u=v$;

  1. $\rho(u, v)=\rho(v, u) \geqslant 0 \quad \forall u, v \in \mathbb{M}$; (对称且非负)

  1. $\rho(u, v) \leqslant \rho(u, w)+\rho(w, v) \quad \forall u, v, w \in \mathbb{M}$。 (三角不等式)

这个函数 $\rho$ 被称为空间 $\mathbb{M}$ 中的**度量(метрикой)**或**距离(расстоянием)**。

通过度量空间,可以引入下面五个重要定义:

1.强收敛

如果 $\lim _{n \rightarrow \infty} \rho\left(u_n, u\right)=0$,度量空间 $\mathbb{M}$ 的元素序列 $\left{u_n\right}$ 与引入的度量 $\rho$ 被称为强收敛(сильно сходящейся) 到元素 $u \in \mathbb {M}$ 。

2.柯西序列

如果 $\lim _{\substack{m \rightarrow \infty \ n \rightarrow \infty}} \rho\left(u_m, u_n\right)=0$,则度量空间 $\mathbb{M}$ 的元素序列 $\left{u_n\right}$ 称为柯西序列(фундаментальной)。

3.完备性

度量空间 $\mathbb{M}$ 被称为完备的,若对于任意基本序列$\left{u_n\right}$存在一个元素 $u \in \mathbb{M}$,使得序列强收敛到它。 $\left(\lim _{n \rightarrow \infty} \rho\left(u_n, u\right)=0\right)$。

换而言之,集合中的元素取极限不超出此空间称其具有完备性。

对于完备性可以举几个例子:有一个有理数组成的一个集合 {1, 1.4, 1.41, 1.414, 1.4142…},

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值