OFDM基础

本文详细介绍了OFDM的正交性,包括其数学定义及离散时间表示;阐述了OFDM调制与解调过程,涉及PSK/QAM符号处理和信道影响;讲解了保护间隔循环前缀的作用,以及如何通过CP实现信道均衡;最后探讨了峰均功率比(PAPR)的概念及其在信号功率控制中的重要性,尤其关注了高功率放大器的适用性。
摘要由CSDN通过智能技术生成

一、OFDM正交性

考虑时间有限的复指数信号 { e j 2 π f k t } k = 0 N − 1 \left\{e^{j 2 \pi f_{k} t}\right\}_{k=0}^{N-1} {ej2πfkt}k=0N1 , 表示OFDM信号中在 f k = k / T s y m f_{k}=k / T_{s y m} fk=k/Tsym 处的不同子载波,其中 0 ≤ t ≤ T s y m 0 \leq t \leq T_{s y m} 0tTsym .

如果这些信号的乘积在其公共(基本)周期内的积分为零,则这些信号被定义为是 正交 的,即
1 T s y m ∫ 0 T s y m e j 2 π f k t e − j 2 π f i t d t = 1 T s y m ∫ 0 T s y m e j 2 π k T s s m t e − j 2 π i T s y m t d t = 1 T s y m ∫ 0 T s y m e j 2 π ( k − i ) T s y m t d t = { 1 , ∀  integer  k = i 0 ,  otherwise  (1) \begin{aligned} \frac{1}{T_{s y m}} \int_{0}^{T_{s y m}} e^{j 2 \pi f_{k} t} e^{-j 2 \pi f_{i} t} d t &=\frac{1}{T_{s y m}} \int_{0}^{T_{s y m}} e^{j 2 \pi\frac{k}{T_{s s m}} t} e^{-j 2 \pi \frac{i}{T_{s y m} }t} d t \\ &=\frac{1}{T_{s y m}} \int_{0}^{T_{s y m}} e^{j 2 \pi \frac{(k-i)}{T_{s y m}} t} d t \\ &=\left\{\begin{array}{ll} 1, & \forall \text { integer } k=i \\ 0, & \text { otherwise } \end{array}\right. \end{aligned} \tag{1} Tsym10Tsymej2πfktej2πfitdt=Tsym10Tsymej2πTssmktej2πTsymitdt=Tsym10Tsymej2πTsym(ki)tdt={1,0, integer k=i otherwise (1)
在时刻 t = n T s = n T s y m / N t=n T_{s}=n T_{s y m} / N t=nTs=nTsym/N , 进行离散采样,可以在 离散时域 将式(1)表示为
1 N ∑ n = 0 N − 1 e j 2 π k T s y m ⋅ n T s e − j 2 π i T s y m ⋅ n T s = 1 N ∑ n = 0 N − 1 e j 2 π k T s y m ⋅ n T s y m N e − j 2 π i T s y m ⋅ n T s y m N = 1 N ∑ n = 0 N − 1 e j 2 π ( k − i ) N n = { 1 , ∀  integer  k = i 0 ,  otherwise  (2) \begin{array}{l} \frac{1}{N} \sum_{n=0}^{N-1} e^{j 2 \pi \frac{k}{T_{s y m}} \cdot n T_{s}} e^{-j 2 \pi \frac{i}{T_{s y m}} \cdot n T_{s}}=\frac{1}{N} \sum_{n=0}^{N-1} e^{j 2 \pi \frac{k}{T_{s y m}} \cdot \frac{n T_{s y m}}{N}} e^{-j 2 \pi \frac{i}{T_{s y m}} \cdot \frac{n T_{s y m}}{N}}\\ =\frac{1}{N} \sum_{n=0}^{N-1} e^{j 2 \pi \frac{(k-i)}{N} n}\\ =\left\{\begin{array}{ll} 1, & \forall \text { integer } k=i \\ 0, & \text { otherwise } \end{array}\right. \end{array} \tag{2} N1n=0N1ej2πTsymknTsej2πTsyminTs=N1n=0N1ej2πTsymkNnTsymej2πTsymiNnTsym=N1n=0N1ej2πN(ki)n={1,0, integer k=i otherwise (2)

二、OFDM调制和解调

OFDM 发射机将消息比特映射为一系列 PSK 或 QAM 符号,随后将其转换为 N 个并行符号流。串并(S/P)转换后的N个符号中的每一个由不同的子载波调制。

X l [ k ] X_{l}[k] Xl[k] 表示在第 k k k 个子载波上的第 l l l 个发送符号, l = 0 , 1 , 2 , ⋯   , ∞ , k = 0 , 1 , 2 , ⋯   , N − 1 l=0,1,2, \cdots, \infty , k=0,1,2, \cdots, N-1 l=0,1,2,,,k=0,1,2,,N1 .

由于串并(S/P)转换, N N N 个符号的传输时间扩展为 N T s N T_{s} NTs , 它是单个OFDM符号的持续时间 T s y m T_{sym} Tsym.

Ψ l . k ( t ) \Psi_{l . k}(t) Ψl.k(t) 表示在第 k k k 个子载波上的第 l l l 个OFDM符号
Ψ l . k ( t ) = { e j 2 π f k ( t − l T s y m ) , 0 < t ≤ T s y m 0 ,  elsewhere  (3) \Psi_{l . k}(t)=\left\{\begin{array}{ll} e^{j 2 \pi f_{k}\left(t-l T_{s y m}\right)}, & 0<t \leq T_{s y m} \\ 0, & \text { elsewhere } \end{array}\right. \tag{3} Ψl.k(t)={ej2πfk(tlTsym),0,0<tTsym elsewhere (3)
时间连续的通频带信号可以表示为
x l ( t ) = Re ⁡ { 1 T s y m ∑ l = 0 ∞ { ∑ k = 0 N − 1 X l [ k ] Ψ l . k ( t ) } } (4) x_{l}(t)=\operatorname{Re}\left\{\frac{1}{T_{s y m}} \sum_{l=0}^{\infty}\left\{\sum_{k=0}^{N-1} X_{l}[k] \Psi_{l . k}(t)\right\}\right\} \tag{4} xl(t)=Re{Tsym1l=0{k=0N1Xl[k]Ψl.k(t)}}(4)
时间连续的基带信号可以表示为
x l ( t ) = ∑ l = 0 ∞ ∑ k = 0 N − 1 X l [ k ] e j 2 π f k ( t − l T s y m ) (4) x_{l}(t)=\sum_{l=0}^{\infty} \sum_{k=0}^{N-1} X_{l}[k] e^{j 2 \pi f_{k}\left(t-l T_{s y m}\right)} \tag{4} xl(t)=l=0k=0N1Xl[k]ej2πfk(tlTsym)(4)
t = l T s y m + n T s t=l T_{s y m} + n T_{s} t=lTsym+nTs 时刻(其中 T s = T s y m / N T_{s} = T_{s y m}/N Ts=Tsym/N, f k = k / T s y m f_{k}=k / T_{s y m} fk=k/Tsym ),对式(4)中时间连续的基带OFDM信号进行采样,可以得到相应的离散时间的OFDM信号

x l [ n ] = ∑ k = 0 N − 1 X l [ k ] e j 2 π k n / N  for  n = 0 , 1 , … , N − 1 (5) x_{l}[n]=\sum_{k=0}^{N-1} X_{l}[k] e^{j 2 \pi k n / N} \quad \text { for } \quad n=0,1, \ldots, N-1 \tag{5} xl[n]=k=0N1Xl[k]ej2πkn/N for n=0,1,,N1(5)

式(5)是PSK 或 QAM 符号 { X l [ k ] } k = 0 N − 1 \left\{X_{l}[k]\right\}_{k=0}^{N-1} {Xl[k]}k=0N1 的N点IDFT,并且利用FFT可以进行有效的计算。

考虑基带OFDM接收符号 y l ( t ) = ∑ k = 0 N − 1 X l [ k ] e j 2 π f k ( t − l T s y m ) y_{l}(t)=\sum_{k=0}^{N-1} X_{l}[k] e^{j 2 \pi f_{k}\left(t-l T_{s y m}\right)} yl(t)=k=0N1Xl[k]ej2πfk(tlTsym) , l T s y m < t ≤ l T s y m + n T s l T_{s y m}<t \leq l T_{s y m}+n T_{s} lTsym<tlTsym+nTs .

利用式(1)中子载波间的正交性,可重构原发送符号 X l [ k ] X_{l}[k] Xl[k]

Y l [ k ] = 1 T s y m ∫ − ∞ ∞ y l ( t ) e − j 2 π f k ( t − l T s y m ) d t = 1 T s y m ∫ − ∞ ∞ { ∑ i = 0 N − 1 X l [ i ] e j 2 π f i ( t − l T s s m ) } e − j 2 π f k ( t − l T s y m ) d t = ∑ i = 0 N − 1 X l [ i ] { 1 T s y m ∫ 0 T s y m e j 2 π ( f i − f k ) ( t − l T s y m ) d t } = X l [ k ] (6) \begin{aligned} Y_{l}[k] &=\frac{1}{T_{s y m}} \int_{-\infty}^{\infty} y_{l}(t) e^{-j 2 \pi f_{k}\left(t-l T_{s y m}\right)} d t \\ &=\frac{1}{T_{s y m}} \int_{-\infty}^{\infty}\left\{\sum_{i=0}^{N-1} X_{l}[i] e^{j 2 \pi f_{i}\left(t-l T_{s s m}\right)}\right\} e^{-j 2 \pi f_{k}\left(t-l T_{s y m}\right)} d t \\ &=\sum_{i=0}^{N-1} X_{l}[i]\left\{\frac{1}{T_{s y m}} \int_{0}^{T_{s y m}} e^{j 2 \pi\left(f_{i}-f_{k}\right)\left(t-l T_{s y m}\right)} d t\right\}=X_{l}[k] \end{aligned} \tag{6} Yl[k]=Tsym1yl(t)ej2πfk(tlTsym)dt=Tsym1{i=0N1Xl[i]ej2πfi(tlTssm)}ej2πfk(tlTsym)dt=i=0N1Xl[i]{Tsym10Tsymej2π(fifk)(tlTsym)dt}=Xl[k](6)
上式(6)未考虑信道和噪声的影响。

{ y l [ n ] } n = 0 N − 1 \left\{y_{l}[n]\right\}_{n=0}^{N-1} {yl[n]}n=0N1 为OFDM接受符号 y l ( t ) y_{l}(t) yl(t) t = l T s y m + n T s t=l T_{s y m} + n T_{s} t=lTsym+nTs 时刻的采样。 将 t , T s = T s y m / N t , T_{s} = T_{s y m}/N t,Ts=Tsym/N, f k = k / T s y m f_{k}=k / T_{s y m} fk=k/Tsym 带入式(6)调制过程的积分可以表示为下面的离散时域形式

Y l [ k ] = ∑ n = 0 N − 1 y l [ n ] e − j 2 π f k ( t − l T s y m ) = ∑ n = 0 N − 1 y l [ n ] e − j 2 π ( l T s y m + n T s y m / N − l T s y m ) k / T s y m = ∑ n = 0 N − 1 y l [ n ] e − j 2 π k n / N = ∑ n = 0 N − 1 { 1 N ∑ i = 0 N − 1 X l [ i ] e j 2 π i n / N } e − j 2 π k n / N = 1 N ∑ n = 0 N − 1 ∑ i = 0 N − 1 X l [ i ] e j 2 π ( i − k ) n / N = X l [ k ] (7) \begin{aligned} Y_{l}[k] &=\sum_{n=0}^{N-1} y_{l}[n]e^{-j 2 \pi f_{k}\left(t-l T_{s y m}\right)}\\ &=\sum_{n=0}^{N-1} y_{l}[n]e^{-j 2 \pi \left(l T_{s y m} + n T_{s y m}/N-l T_{s y m}\right)k / T_{s y m}} \\ &=\sum_{n=0}^{N-1} y_{l}[n] e^{-j 2 \pi k n / N} \\ &=\sum_{n=0}^{N-1}\left\{\frac{1}{N} \sum_{i=0}^{N-1} X_{l}[i] e^{j 2 \pi i n / N}\right\} e^{-j 2 \pi k n / N} \\ &=\frac{1}{N} \sum_{n=0}^{N-1} \sum_{i=0}^{N-1} X_{l}[i] e^{j 2 \pi(i-k) n / N}=X_{l}[k] \end{aligned} \tag{7} Yl[k]=n=0N1yl[n]ej2πfk(tlTsym)=n=0N1yl[n]ej2π(lTsym+nTsym/NlTsym)k/Tsym=n=0N1yl[n]ej2πkn/N=n=0N1{N1i=0N1Xl[i]ej2πin/N}ej2πkn/N=N1n=0N1i=0N1Xl[i]ej2π(ik)n/N=Xl[k](7)
式(7)是 { y l [ n ] } n = 0 N − 1 \left\{y_{l}[n]\right\}_{n=0}^{N-1} {yl[n]}n=0N1 的N点DFT,并且利用FFT可以更有效地计算。

在这里插入图片描述

三、保护间隔——循环前缀Cyclic Prefix (CP)

假设循环前缀的长度不小于信道的最大时延,并且假设OFDM符号的FFT窗的起始点确定在其保护间隔内,则OFDM接收机对收到的采样信号 { y l [ n ] } n = 0 N − 1 \left\{y_{l}[n]\right\}_{n=0}^{N-1} {yl[n]}n=0N1 进行FFT得到:

Y l [ k ] = ∑ n = 0 N − 1 y l [ n ] e − j 2 π k n / N = ∑ n = 0 N − 1 { ∑ m = 0 ∞ h l [ m ] x l [ n − m ] + z l [ n ] } e − j 2 π k n / N = ∑ n = 0 N − 1 { ∑ m = 0 ∞ h l [ m ] { 1 N ∑ i = 0 N − 1 X l [ i ] e j 2 π i ( n − m ) / N } } e − j 2 π k n / N + Z l [ k ] = 1 N ∑ i = 0 N − 1 { { ∑ m = 0 ∞ h l [ m ] e − j 2 π i m / N } X l [ i ] ∑ n = 0 ∞ e − j 2 π ( k − i ) n / N } + Z l [ k ] = H l [ k ] X l [ k ] + Z l [ k ] (8) \begin{aligned} Y_{l}[k] &=\sum_{n=0}^{N-1} y_{l}[n] e^{-j 2 \pi k n / N} \\ &=\sum_{n=0}^{N-1}\left\{\sum_{m=0}^{\infty} h_{l}[m] x_{l}[n-m]+z_{l}[n]\right\} e^{-j 2 \pi k n / N} \\ &=\sum_{n=0}^{N-1}\left\{\sum_{m=0}^{\infty} h_{l}[m]\left\{\frac{1}{N} \sum_{i=0}^{N-1} X_{l}[i] e^{j 2 \pi i(n-m) / N}\right\}\right\} e^{-j 2 \pi k n / N}+Z_{l}[k] \\ &=\frac{1}{N} \sum_{i=0}^{N-1}\left\{\left\{\sum_{m=0}^{\infty} h_{l}[m] e^{-j 2 \pi i m / N}\right\} X_{l}[i] \sum_{n=0}^{\infty} e^{-j 2 \pi(k-i) n / N}\right\}+Z_{l}[k] \\ &=H_{l}[k] X_{l}[k]+Z_{l}[k] \end{aligned} \tag{8} Yl[k]=n=0N1yl[n]ej2πkn/N=n=0N1{m=0hl[m]xl[nm]+zl[n]}ej2πkn/N=n=0N1{m=0hl[m]{N1i=0N1Xl[i]ej2πi(nm)/N}}ej2πkn/N+Zl[k]=N1i=0N1{{m=0hl[m]ej2πim/N}Xl[i]n=0ej2π(ki)n/N}+Zl[k]=Hl[k]Xl[k]+Zl[k](8)
前面式(5) x l [ n ] = ∑ k = 0 N − 1 X l [ k ] e j 2 π k n / N x_{l}[n]=\sum_{k=0}^{N-1} X_{l}[k] e^{j 2 \pi k n / N} xl[n]=k=0N1Xl[k]ej2πkn/N ,令n = n - m 则 x l [ n − m ] = ∑ k = 0 N − 1 X l [ k ] e j 2 π k ( n − m ) / N x_{l}[n - m]=\sum_{k=0}^{N-1} X_{l}[k] e^{j 2 \pi k (n - m) / N} xl[nm]=k=0N1Xl[k]ej2πk(nm)/N .

其中 X l [ k ] X_{l}[k] Xl[k] Y l [ k ] Y_{l}[k] Yl[k] H l [ k ] H_{l}[k] Hl[k] Z l [ k ] Z_{l}[k] Zl[k] 分别表示第 k k k 个子载波上的第 l l l 个发送符号、接收符号、信道频率响应和频域噪声,式(8)说明,在频域可以将OFDM系统看做输入符号与信道频率响应的乘积。

无噪声的情况下, Y l [ k ] = H l [ k ] X l [ k ] Y_{l}[k]=H_{l}[k] X_{l}[k] Yl[k]=Hl[k]Xl[k] ,因此知需要用接收信号除以信道即 $ X_{l}[k]=Y_{l}[k] / H_{l}[k]$ 检测发射符号。

对于卷积运算 ∗ * ,当 { y l [ n ] } = { x l [ n ] } ∗ { h l [ n ] } \left\{y_{l}[n]\right\}=\left\{x_{l}[n]\right\} *\left\{h_{l}[n]\right\} {yl[n]}={xl[n]}{hl[n]} 时, DFT ⁡ { y l [ n ] } ≠ DFT ⁡ { x l [ n ] } ⋅ DFT ⁡ { h l [ n ] } \operatorname{DFT}\left\{y_{l}[n]\right\} \neq \operatorname{DFT}\left\{x_{l}[n]\right\} \cdot \operatorname{DFT}\left\{h_{l}[n]\right\} DFT{yl[n]}=DFT{xl[n]}DFT{hl[n]} .因此如果没有CP那么 Y l [ k ] ≠ H l [ k ] X l [ k ] Y_{l}[k] \neq H_{l}[k] X_{l}[k] Yl[k]=Hl[k]Xl[k]

对于循环卷积 ⊗ \otimes , 当 { y l [ n ] } = { x l [ n ] } ⊗ { h l [ n ] } \left\{y_{l}[n]\right\}=\left\{x_{l}[n]\right\} \otimes\left\{h_{l}[n]\right\} {yl[n]}={xl[n]}{hl[n]} 时, Y l [ k ] = H l [ k ] X l [ k ] Y_{l}[k]=H_{l}[k] X_{l}[k] Yl[k]=Hl[k]Xl[k] 。即在发射信号中插入CP是的发射采样与信号采样满足循环卷积,因此可以再接收机得到 Y l [ k ] = H l [ k ] X l [ k ] Y_{l}[k]=H_{l}[k] X_{l}[k] Yl[k]=Hl[k]Xl[k]

四、峰均-平均功率比(PAPR)

PAPR定义为复通频带 s(t) 的最大功率和平均功率之比
PAPR ⁡ { s ~ ( t ) } = max ⁡ ∣ Re ⁡ ( s ~ ( t ) e j 2 π f c t ) ∣ 2 E { ∣ Re ⁡ ( s ~ ( t ) e j 2 π f c t ) ∣ 2 } = max ⁡ ∣ s ( t ) ∣ 2 E { ∣ s ( t ) ∣ 2 } (9) \operatorname{PAPR}\{\tilde{s}(t)\}=\frac{\max \left|\operatorname{Re}\left(\tilde{s}(t) e^{j 2 \pi f_{c} t}\right)\right|^{2}}{E\left\{\left|\operatorname{Re}\left(\tilde{s}(t) e^{j 2 \pi f_{c} t}\right)\right|^{2}\right\}}=\frac{\max |s(t)|^{2}}{E\left\{|s(t)|^{2}\right\}} \tag{9} PAPR{s~(t)}=E{Re(s~(t)ej2πfct)2}max Re(s~(t)ej2πfct) 2=E{s(t)2}maxs(t)2(9)
通过定义波峰因数(Crest Factor, CF),可以按照幅度形式描述上面的功率特性

通频带: C F = P A P R \mathrm{CF}=\sqrt{\mathrm{PAPR}} CF=PAPR

基带: C F = P M E P R \mathrm{CF}=\sqrt{\mathrm{PMEPR}} CF=PMEPR

在具有N个子载波的PSK/OFDM系统中,当N个子载波都以相同的相位相加时,信号出现最大功率。假设 E { ∣ s ( t ) ∣ 2 } = 1 E\left\{|s(t)|^{2}\right\}=1 E{s(t)2}=1 ,这时 PAPR = N ,即最大功率等于N倍的平均功率。当M > 4 , M-QAM比M-PSK的PAPR大。此外,当N增大时,信号出现最大功率的可能性降低。

例如,在MPSK/OFDM系统中,假设在 M N M^{N} MN 个OFDM信号中有 M 2 M^{2} M2 个具有最的大功率,那么最大PAPR出现的可能性为 M 2 / M N = M 2 − N , M^{2} / M^{N}=M^{2-N}, M2/MN=M2N, 或者说很少出现最大的PAPR。

更应关注信号功率超出高功率放大器(High Power Amplifer, HPA)线性范围的概率。为此,首先考虑IFFT模块的输出信号分布。根据中心极限定理,当N点IFFT的输入信号相互独立且幅度有限时(对于QPSK和QAM调制服从均匀分布),对于足够大的子载波数,(在发射机经过 IFFT后)时域复OFDM信号 s(t) 的实部和虚部都渐进服从高斯分布。因此,OFDM信号s(t)的幅度服从瑞利分布。

{ Z n } \left\{Z_{n}\right\} {Zn} 表示复采样 { s ( n T s / N ) } n = 0 N − 1 \left\{s\left(n T_{\mathrm{s}} / N\right)\right\}_{n=0}^{N-1} {s(nTs/N)}n=0N1 的幅度。假设s(t)的平均功率等于1,即 E { ∣ s ( t ) ∣ 2 } = 1 , E\left\{|s(t)|^{2}\right\}=1, E{s(t)2}=1, 那么 { Z n } \left\{Z_{n}\right\} {Zn} 是独立同分布的瑞利随机变量,概率密度函数(PDF)为
f Z n ( z ) = z σ 2 e − z 2 2 σ 2 = 2 z e − z 2 , n = 0 , 1 , ⋯   , N − 1 (10) f_{Z_{n}}(z)=\frac{z}{\sigma^{2}} \mathrm{e}^{-\frac{z^{2}}{2 \sigma^{2}}}=2 z \mathrm{e}^{-z^{2}}, \quad n=0,1, \cdots, N-1 \tag{10} fZn(z)=σ2ze2σ2z2=2zez2,n=0,1,,N1(10)
其中, E { Z n 2 } = 2 σ 2 = 1 E\left\{Z_{n}^{2}\right\}=2 \sigma^{2}=1 E{Zn2}=2σ2=1 。最大的 { Z n } \left\{Z_{n}\right\} {Zn} 相当于前面定义的CF 。令 Z max ⁡ Z_{\max } Zmax 表示CF, 即 Z max ⁡ = max ⁡ n = 0 , 1 , ⋯   , N − 1 Z n Z_{\max }=\max _{n=0,1, \cdots, N-1} Z_{n} Zmax=maxn=0,1,,N1Zn Z max ⁡ Z_{\max } Zmax 的累积分布函数 (cumulative distribution function, CDF) 为:
F Z max ⁡ ( z ) = P ( Z max ⁡ < z ) = P ( Z 0 < z ) ⋅ P ( Z 1 < z ) … P ( Z N − 1 < z ) = ( 1 − e − z 2 ) N (11) \begin{aligned} F_{\mathbf{Z}_{\max }}(z) &=P\left(\mathbf{Z}_{\max }<z\right) \\ &=P\left(\mathbf{Z}_{0}<z\right) \cdot P\left(\mathbf{Z}_{1}<z\right) \ldots P\left(\mathbf{Z}_{N-1}<z\right) \\ &=\left(1-e^{-z^{2}}\right)^{N} \end{aligned} \tag{11} FZmax(z)=P(Zmax<z)=P(Z0<z)P(Z1<z)P(ZN1<z)=(1ez2)N(11)
其中, P ( Z n < z ) = ∫ 0 z f Z n ( x ) d x , n = 0 , 1 , 2 , ⋯   , N − 1 P\left(Z_{n}<z\right)=\int_{0}^{z} f_{Z_{n}}(x) \mathrm{d} x, \quad n=0,1,2, \cdots, N-1 P(Zn<z)=0zfZn(x)dx,n=0,1,2,,N1

为了得到CF超过Z的概率,这里考虑互补累积分布函数(complementary cumulative distribution function,CCDF):
F ~ Z max ⁡ ( z ) = P ( Z max ⁡ > z ) = 1 − P ( Z max ⁡ ≤ z ) = 1 − F Z max ⁡ ( z ) = 1 − ( 1 − e − z 2 ) N (12) \begin{aligned} \tilde{F}_{\mathbf{Z}_{\max }(z)} &=P\left(\mathbf{Z}_{\max }>z\right) \\ &=1-P\left(\mathbf{Z}_{\max } \leq z\right) \\ &=1-F_{\mathbf{Z}_{\max }}(z) \\ &=1-\left(1-e^{-z^{2}}\right)^{N} \end{aligned} \tag{12} F~Zmax(z)=P(Zmax>z)=1P(Zmaxz)=1FZmax(z)=1(1ez2)N(12)
式(11)和式(12)是在假设N个采样相互独立且N足够大的情况下得到的,因此对于带宽有限或过采样信号,上述两式不再成立。这是因为采样信号不一定包含连续时间信号的最大点。由于很难得到过采样信号准确的CDF,因此使用下面简化了的CDF:
F Z ( z ) ≈ ( 1 − e − z 2 ) α N (13) F_{Z}(z) \approx\left(1-\mathrm{e}^{-z^{2}}\right)^{\alpha N} \tag{13} FZ(z)(1ez2)αN(13)
其中,通过将理论的CDF拟合为实际的CDF来确定 α \alpha α。由仿真结果可知对于足够大的N, α = 2.8 \alpha=2.8 α=2.8 比较合适。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值