向量与积分

一、向量的由来

        向量的发展可以从复数的几何表示谈起,十八世纪末期首次利用坐标平面上的点来表示a+bi,将向量用于解决几何与三角问题。但是复数的利用有限制,只能表示平面,无法表示三维,十九世纪中期发明了四元数(超复数,是由实数和三个虚数单位i,j,k),后面麦克斯韦把四元数的数字和向量部分分开处理,创造了大量的矢量分析。

二、向量的表达方式

2.1代数表示

        印刷使用黑体的英文字母,手写则在字母上方添加箭头。

2.2几何表示

        向量可以使用有向线段来表示,长度表示向量的大小,箭头则表示向量的方向。

        零向量:长度为0的向量

        单位向量:长度为1个单位的向量

2.3坐标表示

        平面直角坐标系:取x,y轴方向相同的两个单位向量i,j作为基底。原点到某点的向量称为该点的位置向量。

        空间直角坐标系:取x,y,z轴方向的三个单位向量i,j,k作为基底。位置向量同理。

三、向量的行列式

        行列式的值是一个数字,表示向量所在空间的元素大小。

        平面坐标系中的所有点都可以用\begin{bmatrix} 1\\ 0 \end{bmatrix}\begin{bmatrix} 0\\ 1 \end{bmatrix}这两个向量刻画,也称平面直角坐标空间的标度。

        在三维空间中,由三个三维向量构成的行列式的值,等同于三个3维向量的混合积。

四、向量的点乘与叉乘

4.1点乘(内积)

        点乘的坐标形式运算: \underset{a}{\rightarrow}\cdot \underset{b}{\rightarrow}=\left |\underset{a}{\rightarrow} \right |\left |\underset{b}{\rightarrow} \right |cos\theta =x_{1}*x_{2}+y_{1}*y_{2},坐标形式是将\theta进行展开,再进行三角函数运算。

        可使用点乘求出其夹角:\frac{\underset{a}{\rightarrow}\cdot \underset{b}{\rightarrow}}{\left |\underset{a}{\rightarrow} \right |\left |\underset{b}{\rightarrow} \right |}=cos\theta

        平行向量点乘结果为\left |\underset{a}{\rightarrow} \right |\left |\underset{b}{\rightarrow} \right |

        点乘满足交换律。

        垂直向量点乘结果为0.

4.2叉乘

        叉乘:\underset{a}{\rightarrow}\times \underset{b}{\rightarrow}

        叉乘后向量模:\underset{a}{\rightarrow}\times \underset{b}{\rightarrow}=\left |\underset{a}{\rightarrow} \right |\left |\underset{b}{\rightarrow} \right |sin\theta

        叉乘后向量的方向满足右手定则,不满足交换律与结合律。可使用矩阵进行运算。

五、积分

5.1定积分

        5.1.1定义

                定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。

        5.1.2一般定理

                定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

                定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

                定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

        5.1.3牛顿-莱布尼茨公式

                如果f(x)是[a,b]上的连续函数,并且有F′(x)=f(x),那么\int_{a}^{b}f(x)dx=F(b)-F(a)

        5.1.4基本求解方法

                换元积分法

                (1)f(x)\in C([a,b])

                (2)x=\psi (t)[\alpha ,\beta ]上单值、可导;

                (3)当\alpha \leq t\leq \beta时,a\leq \psi (t)\leq b,且\psi (\alpha )=a,\psi (\beta )=b,则\int_{a}^{b}f(x)dx=\int_{\alpha }^{\beta }f(\psi (t))\psi '(t)dt

                分部积分法

                设u=u(x),v=v(x)均在区间[a,b]上可导,且u′,v′∈R([a,b]),则有分部积分公式: \int_{a}^{b}uv'dx=uv|_{a}^{b}-\int_{a}^{b}vu'dx;

5.2不定积分

        5.2.1定义

         定积分是一个数,不定积分是一个表达式,连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。函数的和的不定积分等于各个函数的不定积分的和。

        5.2.2积分公式

         5.2.3积分方法

                1.积分公式法

                2.换元积分法

                (1)第一类换元法:凑微分法

                (2)第二类换元法:第二类换元法的变换式必须可逆,并且函数在相应区间上是单调的。常用的有根式代换法和三角代换法

                3.分部积分法

                分部积分法的实质是:将所求积分化为两个积分之差,积分容易者先积分。实际上是两次积分。一般来说,u,选取的原则是:1.积分容易者选为v, 2.求导简单者选为u

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
向量是数学中一个重要的概念,它用来表示具有大小和方向的量。在物理学、工程学等领域,向量常常用来描述物体的运动、力的作用等。在微积分中,向量也有着重要的应用。在微积分中,我们常常会遇到曲线的切线、曲线的弧长、曲线的曲率等等问题,而向量就可以很好地帮助我们解决这些问题。 向量的微积分涉及到向量的概念、向量的导数、向量积分等等。在向量的微积分中,我们需要了解向量的运算法则、向量的长度和方向以及向量的单位向量等。在求解向量的导数时,我们需要了解向量的偏导数和全导数的概念,以及向量函数的链式法则和乘积法则等。在求解向量积分时,我们需要了解向量场的曲线积分和曲面积分的概念,以及向量场的散度和旋度等。 在计算机科学中,向量计算也有着广泛的应用。在计算机图形学中,向量可以用来表示图形的位置、方向和大小等信息,通过对向量的运算,我们可以实现图形的平移、旋转、缩放等操作。在人工智能和机器学习领域,向量也常常被用来表示数据和模型,通过对向量的运算,我们可以进行数据的分类、聚类、回归等操作。 CSDN是一个IT技术社区,提供了丰富的技术资源和社交平台。在CSDN上,我们可以找到大量关于向量、微积分以及计算机科学的技术文章、教程和资源。这些资源可以帮助我们更好地学习和应用向量、微积分等知识。同时,我们也可以在CSDN上与其他技术爱好者交流和分享经验,扩展我们的技术视野。 总之,向量、微积分和CSDN在数学、计算机科学等领域中都有着重要的应用和意义,它们的学习和应用可以帮助我们解决实际问题,提升我们的技术水平。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

岗小李

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值