区间dp的四边形优化问题

四边形优化

首先我们先要了解满足四边形不等式 所需要的条件。

a 1 < a 2 ⩽ b 1 < b 2 a1<a2\leqslant b1<b2 a1<a2b1<b2

且有 m [ a 1 , b 1 ] + m [ a 2 , b 2 ] ⩽ m [ a 1 , b 2 ] + m [ a 2 , b 1 ] m[a1,b1]+m[a2,b2]\leqslant m[a1,b2]+m[a2,b1] m[a1,b1]+m[a2,b2]m[a1,b2]+m[a2,b1]时,满足四边形不等式
很显然,对于区间动态规划问题,上述不等式通常是成立的
s [ i , j ] s[i,j] s[i,j] m [ i , j ] m[i,j] m[i,j]中取得最小值的k值,也就是 m [ i , j ] = m [ i , k ] + m [ k , j ] m[i,j]=m[i,k]+m[k,j] m[i,j]=m[i,k]+m[k,j]中的k
则有 s [ i , j − 1 ] ⩽ s [ i , j ] ⩽ s [ i + 1 ] [ j ] s[i,j-1]\leqslant s[i,j]\leqslant s[i+1][j] s[i,j1]s[i,j]s[i+1][j]
这个式子很容易证明,可以自己在草稿纸上尝试一下。
有了这个式子,那么k的取值也就是缩小到了 s [ i , j − 1 ] 到 s [ i + 1 , j ] s[i,j-1]到s[i+1,j] s[i,j1]s[i+1,j]之间了,从而降低了时间复杂度。

接下来上一道需要使用四边形优化的区间dp题。
题目链接 < 点我 >

石子归并问题

N堆石子摆成一个环。现要将石子有次序地合并成一堆。规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价。计算将N堆石子合并成一堆的最小代价。

例如: 1 2 3 4,有不少合并方法 1 2 3 4 => 3 3 4(3) => 6 4(9) => 10(19) 1 2 3 4 =>
1 5 4(5) => 1 9(14) => 10(24) 1 2 3 4 => 1 2 7(7) => 3 7(10) => 10(20)

括号里面为总代价可以看出,第一种方法的代价最低,现在给出n堆石子的数量,计算最小合并代价。

这里要注意的是,环形石头的表示方法可以创建两条线性的石头序列,通过移动即可表示出环形。

#include<bits/stdc++.h>
#define bug(a) (cout<<'*'<<a<<endl)
#define bugg(a,b) (cout<<'*'<<a<<' '<<b<<endl)
#define buggg(a,b,c) (cout<<'*'<<a<<' '<<b<<' '<<c<<endl)
#define pn (cout<<endl)
typedef long long ll;
using namespace std;
int ar[5000];   
int sum[5000];  //前缀和,用来求区间和
int dp[2002][2002];
int f[2002][2002]; //k取值范围的数组
int main()
{
	int n, i, j, dis;
	memset(dp, 0x3f, sizeof(dp));
	scanf("%d", &n);
	for (i = 1; i <= n; i++)
	{
		scanf("%d", &ar[i]);
		ar[i + n] = ar[i];
		sum[i] = sum[i - 1] + ar[i];
		dp[i][i] = 0;
		dp[i + n][i + n] = 0;
		f[i][i] = i;//自己到自己的k值当然为本身
	}
	for (i = n + 1; i <= 2 * n; i++)
		sum[i] = sum[i - 1] + ar[i], f[i][i] = i;
	for (int k = 1; k < n; k++)
	{
		for (int i = 1; i + k <= 2 * n; i++)
		{
			int j = i + k;
			for (int p = f[i][j - 1]; p <= f[i + 1][j]; p++)//四边形优化
			{
				if (dp[i][j] > dp[i][p] + dp[p + 1][j] + sum[j] - sum[i - 1])
				{
					dp[i][j] = dp[i][p] + dp[p + 1][j] + sum[j] - sum[i - 1];
					f[i][j] = p;//记得更新!!!
				}
			}
		}
	}
	int ans = 0x3f3f3f3f;
	for (i = 1; i <= n; i++)
		ans = min(dp[i][i + n - 1], ans);
	printf("%d\n", ans);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
区间DP四边形不等式优化是一种用于优化区间DP的方法。四边形不等式可以用来简化具有特定转移方式的DP问题。具体来说,如果转移方程满足区间包含单调性和四边形不等式,那么可以使用四边形不等式优化来减少计算量。 要判断一个转移方程是否满足区间包含单调性和四边形不等式,可以先进行表格计算来观察。如果观察到满足条件,就可以使用四边形不等式优化。 引理表明,如果一个转移方程满足区间包含单调性和四边形不等式,那么优化后的转移方程也会满足四边形不等式。这意味着通过四边形不等式优化可进一步减少计算复杂度。 因此,区间DP四边形不等式优化是一种有效的优化方法,可以提高算法的效率。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [【DP四边形不等式优化详解(一)](https://blog.csdn.net/qq_37656398/article/details/103537173)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [四边形不等式(优化区间DP技巧)](https://blog.csdn.net/AC__dream/article/details/123668489)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值