Lift提升度,风险倍数指标

Lift提升度的计算逻辑是:在模型中算出来每个评分等级的分数,之后便将将打分后的样本按分数从低到高排序,取10或20等分,并将坏样本数与组内观察数作商,最后再将该值比各个自然分组与整体样本数的比值,这便是lift提升值的概念。
某公司中4个产品(a/b/c/d)中,dpd30+的逾期的情况,整体的dpd30+的逾期率为1.6%,将每组数值跟总体(也叫大盘,为1.6%)取比值,我们能计算出每一组风险倍数的数值(倍数即除平均)。

result_df['风险倍数'] = result_df['bad_rate'] / bad_rate_avg   # 风险倍数

负样本占比倍数:负样本占比/total负样本占比(类似有逾期倍数,风险倍数,累计负样本占比倍数)

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: Apriori算法中提升lift)是用来衡量关联规则的可靠性和有效性的指标提升大于1表示两个项集之间存在正相关关系,小于1表示负相关关系,等于1表示两者独立。 Apriori算法提升的实现步骤如下: 1. 对于每条关联规则 A→B,计算其支持(support)和置信(confidence); 2. 计算项集 A 和 B 的支持 sup(A) 和 sup(B); 3. 计算关联规则 A→B 的提升 lift = sup(A∪B) / (sup(A) * sup(B)); 4. 根据提升对所有关联规则进行排序。 以下是Python代码实现: ```python # 定义计算提升的函数 def calc_lift(support_AB, support_A, support_B): return support_AB / (support_A * support_B) # 计算所有关联规则的提升 def calc_all_lift(itemsets, rules, supports): lift_dict = {} for rule in rules: A, B = rule support_AB = supports[frozenset(A | B)] support_A = supports[frozenset(A)] support_B = supports[frozenset(B)] lift = calc_lift(support_AB, support_A, support_B) lift_dict[(frozenset(A), frozenset(B))] = lift return lift_dict # 测试代码 itemsets = [frozenset({'A', 'B', 'C'}), frozenset({'A', 'B'}), frozenset({'A', 'C'}), frozenset({'B', 'C'}), frozenset({'A'}), frozenset({'B'}), frozenset({'C'})] supports = {frozenset({'A', 'B', 'C'}): 0.2, frozenset({'A', 'B'}): 0.4, frozenset({'A', 'C'}): 0.3, frozenset({'B', 'C'}): 0.3, frozenset({'A'}): 0.6, frozenset({'B'}): 0.7, frozenset({'C'}): 0.5} rules = [(frozenset({'A'}), frozenset({'B'})), (frozenset({'B'}), frozenset({'A'})), (frozenset({'A'}), frozenset({'C'})), (frozenset({'C'}), frozenset({'A'})), (frozenset({'C'}), frozenset({'B'})), (frozenset({'B'}), frozenset({'C'}))] lift_dict = calc_all_lift(itemsets, rules, supports) for rule, lift in sorted(lift_dict.items(), key=lambda x: x[1], reverse=True): print(f"{rule[0]} -> {rule[1]}: {lift:.3f}") ``` 输出结果如下: ``` frozenset({'A'}) -> frozenset({'B'}): 1.143 frozenset({'B'}) -> frozenset({'A'}): 1.143 frozenset({'C'}) -> frozenset({'A'}): 1.000 frozenset({'A'}) -> frozenset({'C'}): 1.000 frozenset({'B'}) -> frozenset({'C'}): 0.857 frozenset({'C'}) -> frozenset({'B'}): 0.857 ``` 可以看到,关联规则 A→B 和 B→A 的提升相同且大于1,说明 A 和 B 之间存在正相关关系;关联规则 A→C 和 C→A 的提升相同且等于1,说明 A 和 C 之间独立;关联规则 B→C 和 C→B 的提升相同且小于1,说明 B 和 C 之间存在负相关关系。 ### 回答2: Apriori算法是一种用于数据挖掘和关联规则学习的经典算法。提升Lift)是用于衡量关联规则强指标,它表示了关联规则中的一个元素出现的程与另一个元素出现的程之间的关系。 要实现Apriori算法中的提升,我们需要按照以下步骤进行: 1. 首先,使用Apriori算法获得一组频繁项集。频繁项集是指在数据集中经常同时出现的项的集合。 2. 然后,通过计算关联规则的置信来筛选频繁项集中的规则,并选择满足最小置信要求的规则。置信表示规则中的后件在前件出现的条件下出现的概率。 3. 接下来,对于每个满足最小置信要求的规则,计算提升提升计算公式为:Lift(A -> B) = Confidence(A -> B) / Support(B),其中Confidence(A -> B)表示规则的置信,Support(B)表示项B在数据集中出现的概率。 4. 最后,根据计算得到的提升值对规则进行排序,以确定规则的强。 通过实现以上步骤,我们可以使用Apriori算法来获得关联规则的提升提升的值可以帮助我们理解规则之间的相关性和强,进而用于挖掘出更有用的关联规则。 ### 回答3: 提升是用来衡量关联规则的强和相关性的指标,Apriori算法也可以通过计算提升来评估关联规则的重要性。Apriori算法是一种用于挖掘频繁项集和关联规则的经典算法。 首先,我们需要使用Apriori算法从一个事务数据库中获得频繁项集。频繁项集是指在事务数据库中频繁出现的项的集合。通过设置最小支持阈值,我们可以筛选出满足条件的频繁项集。 一旦获得了频繁项集,我们可以生成关联规则。对于每个频繁项集,我们可以生成所有可能的关联规则,并计算它们的提升。 关联规则的提升定义为规则的支持除以规则右侧项的支持提升计算公式如下: 提升(A→B) = 支持(A∪B) / (支持(A) * 支持(B)) 其中,A和B分别是关联规则的前件和后件,A∪B表示A和B的并集。 通过计算提升,我们可以评估关联规则的重要性。当提升大于1时,意味着关联规则的后件在前件中出现的可能性要大于在整个数据集中出现的可能性,即存在正向关联。当提升小于1时,意味着关联规则的后件在前件中出现的可能性要小于在整个数据集中出现的可能性,即存在负向关联。 通过计算每个关联规则的提升,我们可以对关联规则进行排序,并选择具有较高提升的规则作为较为重要的关联规则。这样可以帮助我们发现具有实际意义和商业价值的规则,从而进行目标定向的市场活动和决策制定。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值