目录
一、定向思路
风控策略需要不断的更新升级,而且监控、回顾和分析历史规则是一项基本的风控工作,基于业务目标和贷后表现,我们可以直接观测分析当前业务发展是否符合信贷产品的预期,我们通过两个核心指标来判定我们是否进行策略调优和调优方向:
通过率:当前是否满足业务目标,是否波动较大未达成目标放款额。
逾期率分析:一般将观测的时间为dpd15/30/60+等等这些情况,以及dpd15/30/60到dpd90的滚动率(因为如果用dpd90+去判断不太及时,等90天走完再加上放款的滞后性,这里最少需要等120天才能观测一个指标的情况)。
二、 确定调优方向
基于上述思路,策略调优可分为A类调优和D类调优。
D类调优-降低逾期率 |
A类调优-提高通过率 |
在通过的客群中寻找差客户拒绝 |
在拒绝的客群中找好客户通过 |
可能降低通过率,降低逾期指标 |
将提高通过率,逾期指标可能增加 |
A类调优-提高通过率
以提高通过率为目标的策略调优实施,需要根据机构阶段性可承受的信贷风险容忍度,即逾期率水平来确定风险下探的范围。
1)明确哪些规则可以调整,哪些不能调整
风控策略中有许多类型的规则,例如反欺诈、准入、信用评估等;有些属于强规则,比如政策性规则、监管合规层面要求的规则,这些规则不能做调整,对剩下的规则进行进一步的分析
2)查看规则命中情况
规则的命中率进行倒序排列,从上到下依次分析,优先调整命中率高的规则,因为命中率低的规则即使调整也不会对整体的通过率产生明显的提升。
规则命中分析示例图
3)观察规则对应的特征分布
将需要调整的特征进行分箱,观察各个箱内的坏账率情况。对以下两种情况的特征可尝试调整:
Ø 情况一,当分布内的坏账率呈现线性趋势,可预估增大阈值时逾期率的提高率;相反,如随着阈值增大,逾期率变化情况没有趋势,此类特征可无需调整,因为无法判断调整后,整体逾期率是升高还是降低,无法控制风险。
Ø 情况二,当分布内各分箱的坏账率都比较平稳,放宽阈值既能提升通过率,又不会使逾期率增加。
特征分析示例图
D类调优-降低逾期率
以降低逾期率为目标的策略实施,首先需要分析造成当前逾期率高的风险类型,根据不同的风险类型来定义因变量→确定时间窗及样本选取→特征筛选→规则调整
1)确认是新客户还是老客户导致逾期上升,确认时间段
对于逾期率上升,要先分析是新客/老客导致,以及哪个时间范围内进件集中导致。
2) 策略是否有调整内容,反向特征分析验证
- 回溯放款日是否有数据波动,优先看通过率是否变化;
- 观测特殊调整客户的逾期率;
- 观测剔除特殊调整客户后的逾期率,如果正常范围,说明仅需要对特殊客户进行优化处理;
- 最后账龄逾期分析。
3)梳理各转化环节,挖掘风险范围,确定风险类型
DPD逾期率趋势图示例
M1催回率 – 本金示例
对比首逾率、资产方催回率,如果首逾率波动大