问题描述
小明的实验室有N台电脑,编号1~N。原本这N台电脑之间有N-1条数据链接相连,恰好构成一个树形网络。在树形网络上,任意两台电脑之间有唯一的路径相连。
不过在最近一次维护网络时,管理员误操作使得某两台电脑之间增加了一条数据链接,于是网络中出现了环路。环路上的电脑由于两两之间不再是只有一条路径,使得这些电脑上的数据传输出现了BUG。
为了恢复正常传输。小明需要找到所有在环路上的电脑,你能帮助他吗?
输入格式
第一行包含一个整数N。
以下N行每行两个整数a和b,表示a和b之间有一条数据链接相连。
对于30%的数据,1 <= N <= 1000
对于100%的数据, 1 <= N <= 100000, 1 <= a, b <= N
输入保证合法。
输出格式
按从小到大的顺序输出在环路上的电脑的编号,中间由一个空格分隔。
样例输入
5
1 2
3 1
2 4
2 5
5 3
样例输出
1 2 3 5
思路:
无向图不分入度出度,只用判断度数即可。
环的特征是:每个点都可以出发两条边,所以环内每点的度数都为2,所以度数小于2的点必不可能是环内的点。
代码:
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
const int maxn=100050;
int n,a,b,d[maxn]={0}; //d 度数
vector<int> g[maxn];
bool vis[maxn]={false};
void topo()
{
queue<int> q;
for(int i=1;i<=n;i++)
if(d[i]==1) q.push(i); //不是环内的点,入队
while(!q.empty())
{
int u=q.front();
vis[u]=1;
q.pop();
for(int i=0;i<g[u].size();i++)
{
int v=g[u][i];
if(--d[v]==1) q.push(v); //u和v断开,v的度数-1,减一后若度数变为,则可以入队
}
}
}
int main()
{
cin>>n;
for(int i=0;i<n;i++)
{
cin>>a>>b;
g[a].push_back(b); //无向图
g[b].push_back(a);
d[b]++;
d[a]++;
}
topo();
for(int i=1;i<=n;i++)
if(d[i]==2) cout<<i<<" "; //度数为2的点是环内的点
return 0;
}