【蓝桥杯】 试题 历届试题 发现环 (无向图的拓扑排序)

问题描述

小明的实验室有N台电脑,编号1~N。原本这N台电脑之间有N-1条数据链接相连,恰好构成一个树形网络。在树形网络上,任意两台电脑之间有唯一的路径相连。

不过在最近一次维护网络时,管理员误操作使得某两台电脑之间增加了一条数据链接,于是网络中出现了环路。环路上的电脑由于两两之间不再是只有一条路径,使得这些电脑上的数据传输出现了BUG。

为了恢复正常传输。小明需要找到所有在环路上的电脑,你能帮助他吗?

输入格式

第一行包含一个整数N。
  以下N行每行两个整数a和b,表示a和b之间有一条数据链接相连。

对于30%的数据,1 <= N <= 1000
  对于100%的数据, 1 <= N <= 100000, 1 <= a, b <= N

输入保证合法。

输出格式

按从小到大的顺序输出在环路上的电脑的编号,中间由一个空格分隔。

样例输入

5
1 2
3 1
2 4
2 5
5 3

样例输出

1 2 3 5

思路:

无向图不分入度出度,只用判断度数即可。

环的特征是:每个点都可以出发两条边,所以环内每点的度数都为2,所以度数小于2的点不可能是环内的点


代码:

#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
const int maxn=100050;
int n,a,b,d[maxn]={0};  //d 度数
vector<int> g[maxn];
bool vis[maxn]={false};

void topo()
{
	queue<int> q;
	
	for(int i=1;i<=n;i++)
		if(d[i]==1) q.push(i); //不是环内的点,入队
	
	while(!q.empty())
	{
		int u=q.front();
		vis[u]=1;
		q.pop();
		for(int i=0;i<g[u].size();i++)
		{
			int v=g[u][i];
			if(--d[v]==1) q.push(v); //u和v断开,v的度数-1,减一后若度数变为,则可以入队
		}
	}
}

int main()
{
	cin>>n;
	for(int i=0;i<n;i++)
	{
		cin>>a>>b; 
		g[a].push_back(b);  //无向图
		g[b].push_back(a);
		d[b]++;
		d[a]++;
	} 
	topo();
	for(int i=1;i<=n;i++)
		if(d[i]==2) cout<<i<<" "; //度数为2的点是环内的点
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值