//有向图由一组顶点和一组有方向的边组成,每条有方向的边连接着一对有序顶点示意图如下
//在一副有向图中,一个顶点的出度为该顶点指出的边的总数,入度为指向该顶点边的总数
//有向边的实现和无向边类似,只是在添加边时是有方向的,代码实现如下
import java.util.NoSuchElementException;
import StdLib.In;
import StdLib.StdOut;
import chapter1_3.Bag;
import chapter1_3.Stack;
/**
* The {@code Digraph} class represents a directed graph of vertices
* named 0 through <em>V</em> - 1.
* It supports the following two primary operations: add an edge to the digraph,
* iterate over all of the vertices adjacent from a given vertex.
* Parallel edges and self-loops are permitted.
* <p>
* This implementation uses an adjacency-lists representation, which
* is a vertex-indexed array of {@link Bag} objects.
* All operations take constant time (in the worst case) except
* iterating over the vertices adjacent from a given vertex, which takes
* time proportional to the number of such vertices.
* <p>
* For additional documentation,
* see <a href="https://algs4.cs.princeton.edu/42digraph">Section 4.2</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class Digraph {
private static final String NEWLINE = System.getProperty("line.separator");
private final int V; // number of vertices in this digraph
private int E; // number of edges in this digraph
private Bag<Integer>[] adj; // adj[v] = adjacency list for vertex v
private int[] indegree; // indegree[v] = indegree of vertex v 该顶点的入度
/**
* Initializes an empty digraph with <em>V</em> vertices.
*
* @param V the number of vertices
* @throws IllegalArgumentException if {@code V < 0}
*/
public Digraph(int V) {
if (V < 0) throw new IllegalArgumentException("Number of vertices in a Digraph must be nonnegative");
this.V = V;
this.E = 0;
indegree = new int[V];
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++) {
adj[v] = new Bag<Integer>();
}
}
/**
* Initializes a digraph from the specified input stream.
* The format is the number of vertices <em>V</em>,
* followed by the number of edges <em>E</em>,
* followed by <em>E</em> pairs of vertices, with each entry separated by whitespace.
*
* @param in the input stream
* @throws IllegalArgumentException if the endpoints of any edge are not in prescribed range
* @throws IllegalArgumentException if the number of vertices or edges is negative
* @throws IllegalArgumentException if the input stream is in the wrong format
*/
public Digraph(In in) {
try {
this.V = in.readInt();
if (V < 0) throw new IllegalArgumentException("number of vertices in a Digraph must be nonnegative");
indegree = new int[V];
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++) {
adj[v] = new Bag<Integer>();
}
int E = in.readInt();
if (E < 0) throw new IllegalArgumentException("number of edges in a Digraph must be nonnegative");
for (int i = 0; i < E; i++) {
int v = in.readInt();
int w = in.readInt();
addEdge(v, w);
}
}
catch (NoSuchElementException e) {
throw new IllegalArgumentException("invalid input format in Digraph constructor", e);
}
}
/**
* Initializes a new digraph that is a deep copy of the specified digraph.
*
* @param G the digraph to copy
*/
public Digraph(Digraph G) {
this(G.V());
this.E = G.E();
for (int v = 0; v < V; v++)
this.indegree[v] = G.indegree(v);
for (int v = 0; v < G.V(); v++) {
// reverse so that adjacency list is in same order as original
Stack<Integer> reverse = new Stack<Integer>();
for (int w : G.adj[v]) {
reverse.push(w);
}
for (int w : reverse) {
adj[v].add(w);
}
}
}
/**
* Returns the number of vertices in this digraph.
*
* @return the number of vertices in this digraph
*/
public int V() {
return V;
}
/**
* Returns the number of edges in this digraph.
*
* @return the number of edges in this digraph
*/
public int E() {
return E;
}
// throw an IllegalArgumentException unless {@code 0 <= v < V}
private void validateVertex(int v) {
if (v < 0 || v >= V)
throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1));
}
/**
* Adds the directed edge v→w to this digraph.
*
* @param v the tail vertex
* @param w the head vertex
* @throws IllegalArgumentException unless both {@code 0 <= v < V} and {@code 0 <= w < V}
*/
public void addEdge(int v, int w) {
validateVertex(v);
validateVertex(w);
adj[v].add(w); //表明v指向w, 但w并不指向v
indegree[w]++;
E++;
}
/**
* Returns the vertices adjacent from vertex {@code v} in this digraph.
*
* @param v the vertex
* @return the vertices adjacent from vertex {@code v} in this digraph, as an iterable
* @throws IllegalArgumentException unless {@code 0 <= v < V}
*/
public Iterable<Integer> adj(int v) {
validateVertex(v);
return adj[v];
}
// ex4.2.4
public boolean hasEdge(int v, int w) {
for(int n: adj(v)) {
if (n == w) {
return true;
}
}
return false;
}
/**
* Returns the number of directed edges incident from vertex {@code v}.
* This is known as the <em>outdegree</em> of vertex {@code v}.
*
* @param v the vertex
* @return the outdegree of vertex {@code v}
* @throws IllegalArgumentException unless {@code 0 <= v < V}
*/
public int outdegree(int v) {
validateVertex(v);
return adj[v].size(); //该顶点的出度
}
/**
* Returns the number of directed edges incident to vertex {@code v}.
* This is known as the <em>indegree</em> of vertex {@code v}.
*
* @param v the vertex
* @return the indegree of vertex {@code v}
* @throws IllegalArgumentException unless {@code 0 <= v < V}
*/
public int indegree(int v) {
validateVertex(v);
return indegree[v];
}
/**
* Returns the reverse of the digraph.
*
* @return the reverse of the digraph
*/
//有向图反转,将所有边的方向取反
public Digraph reverse() {
Digraph reverse = new Digraph(V);
for (int v = 0; v < V; v++) {
for (int w : adj(v)) {
reverse.addEdge(w, v);
}
}
return reverse;
}
/**
* Returns a string representation of the graph.
*
* @return the number of vertices <em>V</em>, followed by the number of edges <em>E</em>,
* followed by the <em>V</em> adjacency lists
*/
public String toString() {
StringBuilder s = new StringBuilder();
s.append(V + " vertices, " + E + " edges " + NEWLINE);
for (int v = 0; v < V; v++) {
s.append(String.format("%d: ", v));
for (int w : adj[v]) {
s.append(String.format("%d ", w));
}
s.append(NEWLINE);
}
return s.toString();
}
/**
* Unit tests the {@code Digraph} data type.
*
* @param args the command-line arguments
*/
public static void main(String[] args) {
In in = new In(args[0]);
Digraph G = new Digraph(in);
StdOut.println(G);
}
}
有向图的可达行
判断从指定顶点到指定顶点是否可达
//跟无向图类似采用深度优先搜索的方式
public class DirectedDFS {
private boolean[] marked; // marked[v] = true iff v is reachable from source(s)
private int count; // number of vertices reachable from source(s)
/**
* Computes the vertices in digraph {@code G} that are
* reachable from the source vertex {@code s}.
* @param G the digraph
* @param s the source vertex
* @throws IllegalArgumentException unless {@code 0 <= s < V}
*/
//标记从顶点s可达的所有顶点
public DirectedDFS(Digraph G, int s) {
marked = new boolean[G.V()];
validateVertex(s);
dfs(G, s);
}
/**
* Computes the vertices in digraph {@code G} that are
* connected to any of the source vertices {@code sources}.
* @param G the graph
* @param sources the source vertices
* @throws IllegalArgumentException unless {@code 0 <= s < V}
* for each vertex {@code s} in {@code sources}
*/
public DirectedDFS(Digraph G, Iterable<Integer> sources) {
marked = new boolean[G.V()];
validateVertices(sources);
for (int v : sources) {
if (!marked[v]) dfs(G, v);
}
}
private void dfs(Digraph G, int v) {
count++;
marked[v] = true;
for (int w : G.adj(v)) {
if (!marked[w]) dfs(G, w);
}
}
/**
* Is there a directed path from the source vertex (or any
* of the source vertices) and vertex {@code v}?
* @param v the vertex
* @return {@code true} if there is a directed path, {@code false} otherwise
* @throws IllegalArgumentException unless {@code 0 <= v < V}
*/
public boolean marked(int v) {
validateVertex(v);
return marked[v];
}
/**
* Returns the number of vertices reachable from the source vertex
* (or source vertices).
* @return the number of vertices reachable from the source vertex
* (or source vertices)
*/
public int count() {
return count;
}
// throw an IllegalArgumentException unless {@code 0 <= v < V}
private void validateVertex(int v) {
int V = marked.leng