TDL
题目
For a positive integer n, let’s denote function f(n,m)as the mm-th smallest integer x that x>n and gcd(x,n)=1. For example, f(5,1)=6 and f(5,5)=11. You are given the value of mm and (f(n,m)−n)⊕n, where ``⊕’’ denotes the bitwise XOR operation. Please write a program to find the smallest positive integer n that (f(n,m)−n)⊕n=k, or determine it is impossible.
Input:The first line of the input contains an integer T(1≤T≤10), denoting the number of test cases.
In each test case, there are two integers k,m(1≤k≤1e18,1≤m≤100).
Output:For each test case, print a single line containing an integer, denoting the smallest n. If there is no solution, output ``-1’’ instead.
Sample Input:
2
3 5
6 100
Sample Output:
5
-1
题意
多组输入,每组给出一行两个数k,m(k=(f(n,m)-n)⊕n),要找出符合条件的最小的n。
思路
错误①:看见k很大,下意识想找公式,结果没过,说明只可能是前面几组数据是有规律的,后面就不一定。
错误②:按照题目的式子进行模拟,(f(n,m)−n)⊕n=k,根据异或的计算规则,等式左边=f(n,m)−n,等式右边=k^n,第一次从i=1开始发现是错的,然后就从i=2开始递增(其实这里少了条件,还是错的),枚举(找i的第m小的互质的数)寻找答案。
正确:(咨询过学长)对于每一个i,通过n=i^k,求出当前的n,然后再判断n+i是否恰好是n的第m个互质数(此处不可以判n+i内是否有m个与n互质的数当答案)。可能是因为学长的i从1开始枚举,我的i从2开始枚举,然后没有找出最小的n,所以错了。关于枚举的上界,gcd(n+k,n)=gcd(n,k)=gcd(k,n%k),由于在1~k内至少有k/lgk个素数,所以n到n+k内至少有k/lgk个与n互质的数。所以上界up=700(up/lgup>100)。
代码
错误代码①
#include<iostream>
using namespace std;
#define ll long long
ll k,m;
ll f(ll n1,ll m1)
{
if(n1>m1) return n1+m1;
else if(m1==n1) return 2*n1+1;
else if(m1>n1)
{
if(n1==2) return 2*m1+1;
else if(n1>2) return n1*(m1/(n1-1)+1)+m1%(n1-1);
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%lld%lld",&k,&m);
int flag=1;
for(int i=2;i<=90;i++)
{
ll c=k^i,d=f(i,m)-i;
if(c==d)
{
printf("%d\n",i);
flag=0;
break;
}
}
if(flag==1) printf("-1\n");
}
return 0;
}
错误代码②
#include<iostream>
using namespace std;
#define ll long long
ll k,m;
ll gcd(ll a,ll b)
{
return b==0?a:gcd(b,a%b);
}
ll f(ll n1,ll m1)
{
ll ans=0,i=1,n2;
while(ans!=m1)
{
n2=n1+i;
if(gcd(n2,n1)==1) ans++;
i++;
}
return n2;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%lld%lld",&k,&m);
int flag=1;
for(ll i=2;i<=1005;i++)
{
ll c=k^i,d=f(i,m)-i;
if(c==d)
{
printf("%d\n",i);
flag=0;
break;
}
}
if(flag==1) printf("-1\n");
}
return 0;
}
正确代码
#include<iostream>
using namespace std;
#define ll long long
ll k,m,n,key,i;
bool check()
{
ll s=0,j=1;
for(;;j++)
{
if(__gcd(n,n+j)==1) s++;
if(s==m) break;
}
return j==i;//判断n+i是否是n的第m个互质数
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%lld%lld",&k,&m);
ll ans=-1;
for(i=1;i<700;i++)//但是枚举是从该数后第1个数开始(这点我一开始跟n+i搞混了)
{
n=k^i;
if(n>=2&&check())//1跟任何一个数都互质
{
if(ans==-1) ans=n;
else ans=min(n,ans);//要找最小的第m个互质数(之前确实没注意)
}
}
cout<<ans<<endl;
}
return 0;
}