Structured Streaming输出模式

本文介绍了Apache Spark的Structured Streaming的三种输出模式:Append、Complete和Update。Append模式仅追加新增数据,适用于简单查询;Complete模式需要聚合操作,输出所有数据;Update模式则输出有变化的数据,但不支持排序。
摘要由CSDN通过智能技术生成

Structured Streaming输出模式

前言:
Structured Streaming的数据抽象是DataSet和DataFrame,这两种数据流的输出,需要调用writeStream方法。
以下是一个示例:

import org.apache.spark.SparkContext
import org.apache.spark.sql.{
   DataFrame, Dataset, SparkSession}
object  StructuredFromSocket {
   
  def main(args: Array[String]): Unit
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值