15. MapReduce之数据清洗和计数器的应用

MapReduce之数据清洗和计数器的应用

在运行核心业务MapReduce程序之前,往往要先对数据进行清洗,清理掉不符合用户要求的数据。清理的过程往往只需要运行Mapper程序,不需要运行Reduce程序。

1. 数据清洗案例实操-简单解析版
  1. 需求:去除日志中字段长度小于等于11的日志。
  2. 输入数据:点击web.log下载测试数据;
  3. 期望输出数据:每行字段长度都大于11。
  4. 需求分析:需要在Map阶段对输入的数据根据规则进行过滤清洗。
1.1 实现代码
LogMapper
/**
 * @Date 2020/7/12 22:17
 * @Version 10.21
 * @Author DuanChaojie
 */
public class LogMapper extends Mapper<LongWritable, Text,Text, NullWritable> {
    
    Text k = new Text();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        // 1. 获取一行
        String line = value.toString();

        // 2. 解析日志
        boolean result  = parseLong(line,context);

        // 3. 日志不合法退出
        if (!result){
            return;
        }
        // 4.设置key
        k.set(line);
        // 5. 写出数据
        context.write(k,NullWritable.get());

    }

    /**
     * 解析日志
     * @param line
     * @param context
     * @return
     */
    private boolean parseLong(String line, Context context) {
        String[] fields = line.split(" ");
        if(fields.length > 11){
            // 计数器的应用
            context.getCounter("map","true").increment(1);
            return true;
        }else{
            // 计数器的应用
            context.getCounter("map","false").increment(1);
            return false;
        }
    }

}
LogDriver

不要忘了设置reducetask个数为0。

public class LogDriver  {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {

        // 输入输出路径需要根据自己电脑上实际的输入输出路径设置
        args = new String[] { "E:\\file\\input\\log", "E:\\file\\input\\log\\output" };

        // 1 获取job信息
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        // 2 加载jar包
        job.setJarByClass(LogDriver.class);

        // 3 关联map
        job.setMapperClass(LogMapper.class);

        // 4 设置最终输出类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);

        // 设置reducetask个数为0
        job.setNumReduceTasks(0);

        // 5 设置输入和输出路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        // 6 提交
        job.waitForCompletion(true);

    }
}
2. 计数器应用

Hadoop为每个作业维护若干内置计数器,以描述多项指标。例如,某些计数器记录已处理的字节数和记录数,使用户可监控已处理的输入数据量和已产生的输出数据量。

计数器API:

  1. 采用计数器组、计数器名称的方式统计(也可以通过枚举的方式);

  2. context.getCounter("counterGroup", "counter").increment(1);

  3. 计数结果在程序运行后的控制台上查看,具体如下。

    在这里插入图片描述

使用详情见上面的案例LogMapper中:

// 统计合格数据的行数
context.getCounter("map","true").increment(1);
// 不合格数据的行数
context.getCounter("map","false").increment(1);
3. 数据清洗案例实操-复杂解析版(开发重点)

根据上面那个案例应该就了解到数据清洗的开发模式,但是企业中的数据往往要求分析的很细,即准确滴对数据进行筛选,往往以这个案例的模式来筛选的。然而大概思路与上面那个案例一样,所以只需要了解一下这个案例就可以了。

需求:对Web访问日志中的各字段识别切分,去除日志中不合法的记录。根据清洗规则,输出过滤后的数据。

输入数据:点击web.log下载测试数据;

期望输出数据:都是合法的数据。

3.1 代码实现
LogBean

用来记录日志数据中的各数据字段

public class LogBean {
	private String remote_addr;// 记录客户端的ip地址
	private String remote_user;// 记录客户端用户名称,忽略属性"-"
	private String time_local;// 记录访问时间与时区
	private String request;// 记录请求的url与http协议
	private String status;// 记录请求状态;成功是200
	private String body_bytes_sent;// 记录发送给客户端文件主体内容大小
	private String http_referer;// 用来记录从那个页面链接访问过来的
	private String http_user_agent;// 记录客户浏览器的相关信息

	private boolean valid = true;// 判断数据是否合法

	public String getRemote_addr() {
		return remote_addr;
	}

	public void setRemote_addr(String remote_addr) {
		this.remote_addr = remote_addr;
	}

	public String getRemote_user() {
		return remote_user;
	}

	public void setRemote_user(String remote_user) {
		this.remote_user = remote_user;
	}

	public String getTime_local() {
		return time_local;
	}

	public void setTime_local(String time_local) {
		this.time_local = time_local;
	}

	public String getRequest() {
		return request;
	}

	public void setRequest(String request) {
		this.request = request;
	}

	public String getStatus() {
		return status;
	}

	public void setStatus(String status) {
		this.status = status;
	}

	public String getBody_bytes_sent() {
		return body_bytes_sent;
	}

	public void setBody_bytes_sent(String body_bytes_sent) {
		this.body_bytes_sent = body_bytes_sent;
	}

	public String getHttp_referer() {
		return http_referer;
	}

	public void setHttp_referer(String http_referer) {
		this.http_referer = http_referer;
	}

	public String getHttp_user_agent() {
		return http_user_agent;
	}

	public void setHttp_user_agent(String http_user_agent) {
		this.http_user_agent = http_user_agent;
	}

	public boolean isValid() {
		return valid;
	}

	public void setValid(boolean valid) {
		this.valid = valid;
	}

	@Override
	public String toString() {

		StringBuilder sb = new StringBuilder();
		sb.append(this.valid);
		sb.append("\001").append(this.remote_addr);
		sb.append("\001").append(this.remote_user);
		sb.append("\001").append(this.time_local);
		sb.append("\001").append(this.request);
		sb.append("\001").append(this.status);
		sb.append("\001").append(this.body_bytes_sent);
		sb.append("\001").append(this.http_referer);
		sb.append("\001").append(this.http_user_agent);
		
		return sb.toString();
	}
}
LogMapper
public class LogMapper extends Mapper<LongWritable, Text, Text, NullWritable>{
	Text k = new Text();
	
	@Override
	protected void map(LongWritable key, Text value, Context context)	throws IOException, InterruptedException {

		// 1 获取1行
		String line = value.toString();
		
		// 2 解析日志是否合法
		LogBean bean = parseLog(line);
		
		if (!bean.isValid()) {
			return;
		}
		
		k.set(bean.toString());
		
		// 3 输出
		context.write(k, NullWritable.get());
	}

	// 解析日志
	private LogBean parseLog(String line) {

		LogBean logBean = new LogBean();
		
		// 1 截取
		String[] fields = line.split(" ");
		
		if (fields.length > 11) {

			// 2封装数据
			logBean.setRemote_addr(fields[0]);
			logBean.setRemote_user(fields[1]);
			logBean.setTime_local(fields[3].substring(1));
			logBean.setRequest(fields[6]);
			logBean.setStatus(fields[8]);
			logBean.setBody_bytes_sent(fields[9]);
			logBean.setHttp_referer(fields[10]);
			
			if (fields.length > 12) {
				logBean.setHttp_user_agent(fields[11] + " "+ fields[12]);
			}else {
				logBean.setHttp_user_agent(fields[11]);
			}
			
			// 大于400,HTTP错误
			if (Integer.parseInt(logBean.getStatus()) >= 400) {
				logBean.setValid(false);
			}
		}else {
			logBean.setValid(false);
		}
		
		return logBean;
	}
}
LogDriver
public class LogDriver {
	public static void main(String[] args) throws Exception {
		
		// 1 获取job信息
		Configuration conf = new Configuration();
		Job job = Job.getInstance(conf);

		// 2 加载jar包
		job.setJarByClass(LogDriver.class);

		// 3 关联map
		job.setMapperClass(LogMapper.class);

		// 4 设置最终输出类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(NullWritable.class);

		// 5 设置输入和输出路径
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));

		// 6 提交
		job.waitForCompletion(true);
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值