文章目录
Yarn高可用配置
1. YARN-HA工作机制
官方文档:http://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/ResourceManagerHA.html
YARN-HA工作机制:
2. 配置YARN-HA集群
2.1 环境准备
在HDFS-HA集群的基础上配置。
2.2 规划集群
hadoop | hadoop101 | hadoop102 |
---|---|---|
NameNode | NameNode | |
JournalNode | JournalNode | JournalNode |
DataNode | DataNode | DataNode |
ZK | ZK | ZK |
ResourceManager | ResourceManager | |
NodeManager | NodeManager | NodeManager |
2.3 具体配置
yarn-site.xml
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<!--启用resourcemanager ha-->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!--声明两台resourcemanager的地址-->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>cluster-yarn1</value>
</property>
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>hadoop</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>hadoop101</value>
</property>
<!--指定zookeeper集群的地址-->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>hadoop:2181,hadoop101:2181,hadoop102:2181</value>
</property>
<!--启用自动恢复-->
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property>
<!--指定resourcemanager的状态信息存储在zookeeper集群-->
<property>
<name>yarn.resourcemanager.store.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
<!-- 日志聚集功能使能 -->
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<!-- 日志保留时间设置7天 -->
<property>
<name>yarn.log-aggregation.retain-seconds</name>
<value>604800</value>
</property>
</configuration>
同步更新其他节点的配置信息
启动hdfs
sbin/start-dfs.sh
启动YARN
#在hadoop101中执行
sbin/start-yarn.sh
#在hadoop中执行:
sbin/yarn-daemon.sh start resourcemanager
#查看服务状态
bin/yarn rmadmin -getServiceState rm2
此时hadoop和hadoop101状态分别是standby和active。并且我们访问http://hadoop:8088/cluster/scheduler的话它会自动跳到http://hadoop101:8088/cluster/scheduler。此时我们杀死hadoop101上的resourcemanager,效果如下:
3. HDFS Federation架构设计
3.1 NameNode架构的局限性
Namespace(命名空间)的限制
由于NameNode在内存中存储所有的元数据(metadata),因此单个NameNode所能存储的对象(文件+块)数目受到NameNode所在JVM的heap size的限制。50G的heap能够存储20亿(200million)个对象,这20亿个对象支持4000个DataNode,12PB的存储(假设文件平均大小为40MB)。随着数据的飞速增长,存储的需求也随之增长。单个DataNode从4T增长到36T,集群的尺寸增长到8000个DataNode。存储的需求从12PB增长到大于100PB。
隔离问题
由于HDFS仅有一个NameNode,无法隔离各个程序,因此HDFS上的一个实验程序就很有可能影响整个HDFS上运行的程序。
性能的瓶颈
由于是单个NameNode的HDFS架构,因此整个HDFS文件系统的吞吐量受限于单个NameNode的吞吐量。
HDFS Federation架构设计,能不能有多个NameNode呢?
NameNode | NameNode | NameNode |
---|---|---|
元数据 | 元数据 | 元数据 |
Log | machine | 电商数据/话单数据 |
3.2 HDFS Federation应用思考
不同应用可以使用不同NameNode进行数据管理,如:图片业务、爬虫业务、日志审计业务
Hadoop生态系统中,不同的框架使用不同的NameNode进行管理NameSpace。(隔离性)