试题 算法训练 乘法次数
资源限制
时间限制:1.0s 内存限制:999.4MB
问题描述
给你一个非零整数,让你求这个数的n次方,每次相乘的结果可以在后面使用,求至少需要多少次乘。如24:22=22(第一次乘),2222=24(第二次乘),所以最少共2次;
输入格式
第一行m表示有m(1<=m<=100)组测试数据;
每一组测试数据有一整数n(0<n<=100000000);
输出格式
输出每组测试数据所需次数s;
样例输入
3
2
3
4
样例输出
1
2
2
思路:本题无论输入的是多少,就是这个数的幂次,而幂次可以为:1、2、4、8、16…然后一直为2的倍数,所以我们可以利用2次幂的表达式的思想来做这个题,以15为例,从次数2到16需要四次,这个时候16已经比15大了,所以总次数减一为3次,三次的话就是8,15减去8还剩下7,而构成8的幂次肯定可以构成7,只需要拿过来用即可(题中说到每次相乘的结果可以在后面使用),那么7很明显由4、2、1组成,直接加上三次就是六次,计算7这一步需要往回走,用一个递归,刚开始15减去8的时候这时是8,而8大于7,需要除以2,变为4,然后7减4变成3,4大于3就变成除2变成2,3减2变成1,然后再重复同样的计算即可,所以15需要六次,所有的数都可以用这个方法,而遇到8、16这样的直接可以乘出来的可以重新判断,并直接输出(具体看代码理解)。
#include<iostream>
using namespace std;
int shu(int s,int j,int sum){
while(s>0){
if(j<=s){
s-=j;
sum++;
}
j/=2;
}
return sum;
}
int a[105];
main(){
int m,i,j=1,k,sum=0,s;
cin>>m;
for(i=0;i<m;i++){
cin>>a[i];
}
for(i=0;i<m;i++){
while(1){
if(j<a[i]){
j+=j;
sum++;
} else if(j==a[i]){
cout<<sum<<endl;
break;
} else{
sum--;
s=a[i]-j/2;
cout<<shu(s,j,sum)<<endl;
break;
}
}
sum=0;j=1;
}
}