timm库安装

文章介绍了在conda环境中,为了避免Pytorch版本被自动更新,如何通过添加conda-forge通道并使用pip指定版本号来安装timm0.5.4,特别指出在pytorch1.11.0和cuda11.3环境下操作的注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

按理来说

conda config --append channels conda-forge
conda install timm

更新timm版本 pip install timm==0.5.4 (python3.8, pytorch=1.11.0 cuda11.3).
注意pytorch版本
如果你的pytorch版本为1.11,那么直接
conda install timm会把你的pytorch 更新到1.12
所以还是加上版本 pip install timm==0.5.4 
PyTorch Timm是一个开源的PyTorch,用于实现图像分类任务。它提供了一系列预训练的模型,包括各种常见的卷积神经网络架构,如ResNet、EfficientNet和ViT等。通过Timm,您可以方便地加载这些预训练的模型,并在自己的图像分类任务中使用它们。 要使用Timm,首先需要安装timm包。您可以使用命令"!pip install timm"来安装它。接下来,您需要导入相关的模块,并读取您的数据集。在读取数据集之前,您可以定义一些数据增强操作,如随机裁剪、水平翻转和旋转等。然后,使用torchvision.datasets.CIFAR10类加载CIFAR10数据集,并将其转换为可迭代对象。最后,您可以使用torch.utils.data.DataLoader类定义数据加载器,通过指定批次大小、是否进行洗牌以及使用的工作线程数量来配置数据加载器。 以下是使用Timm实现图像分类任务的代码示例: ``` import torch import torch.nn as nn import timm import torchvision.transforms as transforms from torchvision.datasets import CIFAR10 # 数据增强 train_transforms = transforms.Compose([ transforms.RandomCrop(size=32, padding=4), transforms.RandomHorizontalFlip(p=0.5), transforms.RandomRotation(degrees=15), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]) test_transforms = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]) # 数据集 train_dataset = CIFAR10(root='data', train=True, download=True, transform=train_transforms) test_dataset = CIFAR10(root='data', train=False, download=True, transform=test_transforms) # DataLoader train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=4) ``` 通过以上代码,您可以使用Timm加载CIFAR10数据集,并进行数据增强和数据加载。接下来,您可以根据您的需求,选择适合的Timm模型,并在这些数据上进行训练或评估分类任务。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [【计算机视觉 | Pytorchtimm 包的具体介绍和图像分类案例(含源代码)](https://blog.csdn.net/wzk4869/article/details/130666405)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python与遥感

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值