怎么全是重名
码龄5年
关注
提问 私信
  • 博客:113,876
    113,876
    总访问量
  • 205
    原创
  • 18,845
    排名
  • 877
    粉丝
  • 学习成就

个人简介:开心就好,任何时刻你都有充足的理由保持乐观 不管当下如何,未来一定会有更糟糕的时刻

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河北省
  • 加入CSDN时间: 2019-06-28
博客简介:

qihshe的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    5
    当前总分
    1,565
    当月
    7
个人成就
  • 获得1,370次点赞
  • 内容获得18次评论
  • 获得1,067次收藏
  • 代码片获得1,933次分享
创作历程
  • 57篇
    2024年
  • 148篇
    2023年
成就勋章
TA的专栏
  • 论文反馈
    付费
    6篇
  • Supplementary knowledge
    付费
    6篇
  • AITOD
    8篇
  • 论文笔记
    85篇
  • simple
    4篇
  • 综述
    2篇
  • light-weight network
    6篇
  • R-CNN
    8篇
  • YOLO
    12篇
  • 小白入门
    5篇
  • software install
    5篇
  • python ai error(vs)
    36篇
  • ML——algorithm
    13篇
  • function knowledge
    1篇
  • Machine Learning——wu
    13篇
  • Deep Learning
    10篇
  • 论文获取
    1篇
  • English Grammar
    1篇
  • 算法训练营C++
    3篇
兴趣领域 设置
  • 数据结构与算法
    排序算法推荐算法
  • 人工智能
    计算机视觉目标检测机器学习深度学习神经网络pytorch视觉检测图像处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

ImportError: cannot import name ‘print_log‘ from ‘logging‘

mmcv升级到2.+后。
原创
发布博客 2024.09.08 ·
342 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

ModuleNotFoundError: No module named ‘mmcv.transforms‘

升级后自然又面临一系列不兼容问题!mmcv升级到2.0.0即可解决。
原创
发布博客 2024.09.08 ·
365 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

DNTR——F

由于图像数据中微小物体所占像素比例很小,因此精确地检测这些物体仍然是一个巨大的挑战。特别是在地理科学和遥感领域,高保真度的微小物体检测可以促进城市规划和环境监测等应用的发展。特征金字塔网络中的特征融合对于多尺度目标的检测至关重要。但是,由于不同尺度的特征之间没有正则化,在融合过程中可能会产生噪声特征。因此,作者提出了一个新的框架DNTR,它由DeNoising FPN模块和Trans R-CNN检测器组成。
原创
发布博客 2024.08.08 ·
1141 阅读 ·
22 点赞 ·
0 评论 ·
14 收藏

SimD_F

由于微小目标的大小和信息的缺乏,微小目标检测已成为计算机视觉中最具挑战性的任务之一。标签分配策略是影响目标检测精度的关键因素。虽然有一些针对微小物体的有效的标签分配策略,但它们大多侧重于降低对边界框的敏感性以增加阳性样本的数量,并且需要设置一些固定的超参数。然而,更多的阳性样本并不一定意味着更好的检测结果,事实上,过多的阳性样本可能会导致更多的假阳性。在本文中,作者引入了一种简单而有效的策略——相似距离(SimD)来评估边界框之间的相似度。
原创
发布博客 2024.08.06 ·
997 阅读 ·
24 点赞 ·
0 评论 ·
9 收藏

SRTOD——F

微小目标检测是目标检测领域的关键问题之一。大多数通用检测器的性能在微小目标检测任务中显著下降。主要的挑战在于如何提取微小物体的有效特征。现有的方法通常是基于生成的特征增强,这种方法受到虚假纹理和伪影的严重影响,难以使微小物体的特征清晰可见,便于检测。作者提出了一种自重构微小目标检测(SR-TOD)框架,有效缓解了信息丢失问题。作者首次在检测模型中引入了自重构机制,并发现了自重构机制与微小目标之间的强相关性。
原创
发布博客 2024.08.06 ·
839 阅读 ·
29 点赞 ·
0 评论 ·
27 收藏

DotD_F

随着基于锚点和无锚点检测器的发展,目标检测取得了很大的进步。然而,由于缺乏外观信息,微小物体的检测仍然具有挑战性。在本文中,作者观察到在目标检测中最广泛使用的度量IoU (Intersection over Union)在检测微小目标时对预测边界框与地面真值之间的轻微偏差很敏感。虽然提出了一些新的指标,如GIoU、DIoU和CIoU,但它们在微小目标检测上的性能仍然远远低于预期水平。
原创
发布博客 2024.08.06 ·
928 阅读 ·
25 点赞 ·
0 评论 ·
30 收藏

ADAS-GPM

微小目标检测最近的一个趋势是引入更细粒度的标签分配策略,为分类和回归提供有希望的监督信息。然而,以往大多数基于IoU (intersection - overunion)的方法存在两个主要缺陷,包括:(1)IoU对微小目标边界盒偏差的容忍度较低;(2)样本间和样本内失衡导致的优化指导不足。基于高斯概率分布的模糊相似度度量(GPM)和自适应动态锚点挖掘策略(ADAS)。GPM旨在解决小边界框与预设锚点之间不准确的相似度测量问题,为标签分配提供更准确的基础。
原创
发布博客 2024.08.06 ·
1136 阅读 ·
30 点赞 ·
0 评论 ·
14 收藏

DetectorRS

本文介绍了一种新的对象检测器——DetectoRS,通过在骨干网络设计中引入递归特征金字塔和可切换的空洞卷积机制,实现了出色的性能提升。在宏观层面,递归特征金字塔将额外的反馈连接添加到底部向上传播的骨干层中;在微观层面,可切换的空洞卷积通过不同的空洞率对特征进行卷积,并使用开关函数收集结果。实验结果显示,在COCO测试集中,DetectoRS取得了最先进的55.7%的边界框AP、48.5%的实例分割AP和50.0%的全景分割PQ。
原创
发布博客 2024.07.26 ·
410 阅读 ·
5 点赞 ·
0 评论 ·
9 收藏

SimD~

本文介绍了一种名为相似性距离(SimD)的简单而有效的标签分配策略,用于解决小目标检测中的挑战问题。传统的IoU和NMS方法存在一些固定超参数需要设置的问题,而且过多的正样本并不一定能提高检测结果的准确性。因此,本文提出的SimD策略不仅考虑了位置和形状相似度,还能够自适应地学习超参数,适用于不同数据集和各种对象大小的情况。实验结果表明,在四个主流的小目标检测数据集上,该方法的表现优于现有的最佳竞争对手,并且在AI-TOD数据集上的表现特别突出,达到了1.8 AP点和4.1 AP点的提升。
原创
发布博客 2024.07.26 ·
1001 阅读 ·
12 点赞 ·
0 评论 ·
7 收藏

DNTRo

本文旨在解决计算机视觉领域中微小物体检测的问题。由于图像数据中微小物体所占像素比例很小,因此精确地检测这些物体仍然是一个巨大的挑战。特别是在地理科学和遥感领域,高保真度的微小物体检测可以促进城市规划和环境监测等应用的发展。为此,作者提出了一个新的框架DNTR,它由DeNoising FPN模块和Trans R-CNN检测器组成。DN-FPN模块利用对比学习抑制FPN上每个级别的特征中的噪声,并在Top-down路径中融合不同尺度的特征。
原创
发布博客 2024.07.26 ·
727 阅读 ·
18 点赞 ·
0 评论 ·
22 收藏

SRTOD

本文主要探讨了在目标检测领域中,如何解决微小物体检测的问题。传统的通用检测器在处理微小物体时性能下降严重,主要是因为难以提取有效的特征。为了解决这个问题,作者提出了一个自我重建的微小物体检测框架(SR-TOD),并在检测模型中引入了一个自我重建机制。通过构建输入图像和重建图像之间的差异图,可以提高微小物体的可见性和清晰度,并增强弱表示以改善检测器的性能。此外,作者还开发了一种基于差异图引导的特征增强模块(DGFE)来进一步提升微小特征的清晰度。
原创
发布博客 2024.07.26 ·
657 阅读 ·
9 点赞 ·
0 评论 ·
27 收藏

Robust Tiny Object Detection in Aerial Images amidst Label Noise

精确检测遥感图像中的小目标非常困难,因为这类目标视觉信息有限且在场景中频繁出现。此外,手动标注这些小目标不仅费时费力,还容易出错,即产生标签噪声。当使用带有噪声标签的训练集训练检测器时,网络往往倾向于过度拟合错误标签,导致性能不佳。为了解决这一问题,作者提出了DeNoising Tiny Object Detector(DN-TOD)。该方法包含两个关键组成部分:Class-aware Label Correction(CLC)和Trend-guided Learning Strategy(TLS)。
原创
发布博客 2024.06.10 ·
939 阅读 ·
29 点赞 ·
0 评论 ·
18 收藏

Inner-IoU

作者指出IoU损失在理论上有能力精确描述边界框回归状态,但在实践中,它不能自适应地匹配不同的检测器和检测任务,导致泛化能力较弱。为了解决这个问题,作者首先分析了BBR模型,发现区分不同回归样本并通过不同规模的辅助边界框来计算损失可以有效地加速回归过程。对于高IoU的样本,使用较小的辅助边界框来计算损失可以加快收敛,而低IoU的样本则更适合使用较大尺寸的辅助边界框。基于此Inner-IoU应运而生,它通过辅助边界框来计算IoU损失。
原创
发布博客 2024.06.07 ·
399 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

服务器进不去conda环境问题

立即重新加载和应用 .bashrc 配置文件中的设置。当你对 .bashrc 文件进行了修改,比如添加或修改了环境变量、别名(alias)、函数等功能后,通常需要执行这个命令来让这些更改在当前终端会话中生效,而无需关闭并重新打开终端。
原创
发布博客 2024.06.02 ·
326 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

mmcv-full安装失败更换whl安装

不知道服务器什么鬼,莫名其妙安装mmcv-full一直报错,这下就真的是一时卸载一直爽。然后path是你的路径。不得已只能去下载轮子。
原创
发布博客 2024.05.06 ·
603 阅读 ·
7 点赞 ·
1 评论 ·
2 收藏

查看自己的环境配置脚本文件

【代码】查看自己的环境配置脚本文件。
原创
发布博客 2024.05.06 ·
148 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

Decoupling Representation and Classifier for Long-Tailed Recognition

本文探讨了深度学习在长尾分布数据集上的分类问题,并提出了将表示学习和分类器学习分开的方法。通过实验发现,即使使用最简单的平衡采样方法,也可以获得高质量的表示学习结果,并且只调整分类器即可实现强大的长尾识别能力。
原创
发布博客 2024.04.29 ·
660 阅读 ·
25 点赞 ·
0 评论 ·
17 收藏

统计数据集中各个类别实例数量

【代码】统计数据集中各个类别实例数量。
原创
发布博客 2024.04.29 ·
137 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

SimCal(ECCV2020)

本文主要研究了长尾分布下的实例分割问题,并提出了一个简单而有效的解决方案——SimCal方法。在现有的实例检测和分割模型中,它们通常只适用于样本数量相当平衡的数据集,如COCO数据集,而在现实场景下,数据集通常是长尾分布的,这会导致性能下降。作者通过系统地调查了Mask R-CNN模型在LVIS数据集上的表现,发现其准确率下降的主要原因是物体提案分类不准确。为了解决这个问题,作者首先考虑了各种技术来提高长尾分类性能,这些技术确实提高了实例分割结果。然后,作者提出了一种简单的校准框架。
原创
发布博客 2024.04.26 ·
729 阅读 ·
17 点赞 ·
0 评论 ·
30 收藏

BAGS:Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax

本文探讨了在深度学习模型中解决长尾大型词汇物体检测的问题。作者发现现有的检测方法无法处理极度倾斜的数据集中的少数类别的问题,导致分类器不平衡。直接将长尾分类模型应用到检测框架中并不能解决问题,因为检测和分类之间存在本质差异。为了解决这个问题,作者提出了一个新颖的平衡组softmax(BAGS)模块,通过分组训练来平衡检测框架中的分类器。该模块可以对头部和尾部类别进行隐式调节,并确保它们都得到充分训练,而无需额外采样来自尾部类别的实例。
原创
发布博客 2024.04.26 ·
751 阅读 ·
24 点赞 ·
1 评论 ·
13 收藏
加载更多