pytorch中transform.Compose()用法

本文详细说明了如何在PyTorch中运用torchvision.transforms.Compose来组织图像变换,以应用于数据增强和测试预处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torchvision.transforms.Compose(transforms) 是 PyTorch 中 torchvision 包提供的一个函数,用于将多个图像变换操作组成一个变换操作序列。它接受一个变换操作列表 transforms 作为输入,并返回组合后的变换操作。这个组合操作可以应用于数据增强,也可以应用于测试时对数据的预处理。下面是一个使用示例:

import torch
from torchvision import transforms

# 定义多个图像变换操作
transform_train = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

transform_test = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# 应用组合变换操作
train_dataset = YourDataset(root='data', train=True, transform=transform_train)
test_dataset = YourDataset(root='data', train=False, transform=transform_test)

train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=False)

在上面的示例中,Compose() 函数被用于定义多个图像变换操作的序列。transform_traintransform_test 分别定义了两个不同的变换操作序列,分别应用于训练数据和测试数据。最后,通过实例化 YourDataset 类并传入相应的变换操作序列,得到了数据集对象。这些数据集对象可以被用于实例化 PyTorch 的 DataLoader 并进行数据加载。这样,在数据加载时就会自动应用相应的图像变换操作序列,从而实现了数据增强和预处理的效果。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

githubcurry

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值