Hadoop---MR的Job提交源码---(源码篇一)

本文详细剖析了Hadoop MapReduce (MR) 作业的提交过程,从源码层面探讨MR的工作原理。首先介绍了获取配置信息的步骤,然后讲解如何根据配置决定在本地还是YARN运行。接着,深入submitJobInternal()方法,依次检查作业输出路径,生成Job的临时目录和ID,复制并配置文件,生成切片信息,并设置MapTask数量,最后提交Job并删除临时工作目录。
摘要由CSDN通过智能技术生成

MR的Job提交源码

刨析一遍切片原理
以源码角度,来深刻理解MR工作原理。
MR源码分析:(wordCount案例)–入口类

问题:
MR中的Job,是如何提交的
首先:
DeBug流程走一波。
在这里插入图片描述
进入提交作业方法:
在这里插入图片描述
在这里插入图片描述
它这里做了一件事,获取了配置信息,思考题:什么配置信息?不会可以留言
在这里插入图片描述
通过YarnClientProtocolProvider | LocalClientProtocolProvider 根据配置文件的参数信息
获取当前job需要执行到本地还是Yarn
最终:LocalClientProtocolProvider ==> LocalJobRunner

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值