《Linear Graph Convolutional Model for Diagnosing Brain Disorders Zarina》阅读笔记

《Linear Graph Convolutional Model for Diagnosing Brain Disorders Zarina》


Zarina》)


前言

很久没更新了,虽然最近有在读文章,但是一直懒得写。个人认为,这篇文章的创新点其实不大,只是把一些现存的东西应用到了医学领域。自己近期也在做类似的课题,并且还是有看了就忘的老毛病,所以记一些笔记让自己能更好的回顾。

论文地址:https://link.springer.com/chapter/10.1007/978-3-030-36683-4_65
代码地址:https://github.com/zarina-aniraz/linear-graph-convolution


一、简要介绍


现在根据静息态的功能磁共振(Resting-state fMRI)做疾病分类的比较多,任务态的相对较少(也可能是我读的文章不够多)。在此基础上,还可以进行比较详细的划分:机器学习分类方法以及深度分类方法。早期的文章都是用机器学习的方法来做的,根据一些人工设计的特征去训练模型。随着深度学习的发展,研究人员开始把CNN,GNN这样的模型应用到这个方向上来。然后呢,用GNN模型的文章又可以分为两类,分别是Individual level 和 Population level。

在这里插入图片描述

Individual level(左侧):将一个被试构建成一个graph,然后通过一些池化的手段得到全图的表示并将其用于分类。
Population level(右侧):将一个被试看作一个节点,所有的被试组成一个graph,然后通过GNN模型预测节点的标签。

下面就用一个表格来稍微总结一下这两种方式之间的区别:
在这里插入图片描述



二、实验

1.模型

作者考虑到数据集很小(被试数量少于1000),使用GCN模型只会带来不必要的复杂性(由于有非线性激活函数的存在)以及训练时间成本的增大和准确率的下降。所以这里作者就直接用了SGC模型,Simple Graph Convolution,去掉了卷积层之间的非线性激活函数。

在这里插入图片描述
在这里插入图片描述



2.特征及边

我感觉文章对于特征以及边的构建讲的都比较模糊,所以去看了看源码,源码还是写的比较详细的。

首先讲一下节点的初始特征特征F:取被试的功能连接矩阵的上三角阵(平铺)并对其做标准化,该向量作为该节点(被试)的特征向量。

在这里插入图片描述
其次是邻接矩阵A:根据被试的表型特征(性别,年龄,惯用手,扫描地点等),计算被试与被试之间的距离。
在这里插入图片描述
其中m代表表型特征的个数,|| ||H代表汉明距离。最终的邻接矩阵根据如下的公式(标准化)计算得到:

在这里插入图片描述



三、实验结果

Graph_no_features:用大小和节点数量相等的单位阵代替原先的特征矩阵。

Graph_random:在节点与节点之间随机构造边。根据代码,它所构造的边的取值是[0, 0.5, 1],然后再做标准化。

Graph_identity:邻接矩阵用单位阵代替。

在这里插入图片描述

参数敏感性实验:
在这里插入图片描述
果然GNN模型还是不能叠太深,不然不是过平滑的问题就是过拟合的问题。



总结

无。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值