《Graph Neural Network for Interpreting Task-fMRI Biomarkers》阅读笔记

《Graph Neural Network for Interpreting Task-fMRI Biomarkers》


前言

2019年MICCAI的文章,也是李霄霄大佬组的文章。Individual-level的,不过用的是任务态的核磁数据。


一、模型

在这里插入图片描述
上图包含了两个阶段。第一个阶段(上半部分) 是在整个脑网络上训练出分类效果良好的GNN模型;第二个阶段(下半部分)则是将模型在子图上进行验证,并探索哪些区域是ASD的生物标志。


1.图的定义

我看了挺多文章的,只有这篇文章里定义了边的属性。不过在2020年MICCAI的文章中又没有用边的属性。

节点集:   V = ( v 1 , v 2 , . . . , v n ) T ∈ R N × D V=(v_1,v_2,...,v_n)^T∈R^{N×D} V=(v1,v2,...,vn)TRN×D D D D是节点的属性维度。

节点属性:  v 1 ∈ R 10 v_1∈R^{10} v1R10度、GLM系数( β 1 \beta_1 β1, β 2 \beta_2 β2, β 3 \beta_3 β3, β 4 \beta_4 β4)、BOLD的均值及标准差、ROI坐标( x x x, y y y, z z z

      经过Box-Cox变化,使每一维属性呈正态分布。

边集:    E = [ e i j ] ∈ R N × N × F E=[e_{ij}]∈R^{N×N×F} E=[eij]RN×N×F F F F为边的属性维度。

边属性:   e i j ∈ R 3 e_{ij}∈R^3 eijR3皮尔逊相关系数、偏相关系数、 e x p ( − r i j / 10 ) exp(-r_{ij}/10) exp(rij/10) r i j r_{ij} rij为两个ROI之间的几何距离)

邻接关系:  a i j = { r , r ≥ q 0 , o t h e r w i s e a_{ij}=\begin{cases} r, r \ge q \\ 0, otherwise \\ \end{cases} aij={r,rq0,otherwise。其中 r r r代表偏相关系数, q q q则为偏相关系数的第95百分位。

注:这篇文章是随机取ROI内1/3体素的均值作为该区域的时间序列。这样的处理方法可用于样本扩充。


2.GNN

在这里插入图片描述
节点更新公式:
在这里插入图片描述
其中 σ ( . ) \sigma(.) σ(.) R e L U ReLU ReLU激活函数; N ( i ) N(i) N(i)表示节点 i i i的一阶邻居; Θ ∈ R ( l ) × ( l − 1 ) \Theta∈R^{(l)×(l-1)} ΘR(l)×(l1)是可学习矩阵; h Φ h_\Phi hΦ则MLP,将边属性 e i j e_{ij} eij映射为 d ( l ) × d ( l − 1 ) d^{(l)}×d^{(l-1)} d(l)×d(l1)矩阵。


池化用的是Top-K的方式:
在这里插入图片描述
w w w是一个可学习的投影向量; ∣ ∣ . ∣ ∣ || .|| . L 2 L_2 L2范式。吐槽一下这个排版。


然后需要一个Readout层来总结出全局向量 s s s。文章中采用了skip-connection的方法来拼接多层的向量 s ( l ) s^{(l)} s(l)
在这里插入图片描述
在这里插入图片描述


3.数据敏感性

作者将整个脑网络划分为多个子图,探讨模型对子图的分类效果,并进一步探索每个ROI的重要性,以找到具有标志性的区域。

定义 G s = ( V s , E s ) G_s=(V_s,E_s) Gs=(Vs,Es)为被试 s s s s = 1 , . . . , S s=1,...,S s=1,...,S。将 S S S个边属性张量 E s E_s Es中的偏相关系数矩阵拼接成三维张量 τ ∈ R N × N × S \tau∈R^{N×N×S} τRN×N×S

第一步,将节点聚成多个簇。这里用到了parafac张量分解方法,对三维张量 τ ∈ R N × N × S \tau∈R^{N×N×S} τRN×N×S进行分解。

在这里插入图片描述
a j = b j ∈ R N a_j=b_j∈R^N aj=bjRN c j ∈ R S c_j∈R^S cjRS R R R为秩(簇的数量)。

a j i > m e a n ( a j ) + s t d ( a j ) a_{ji}>mean(a_j)+std(a_j) aji>mean(aj)+std(aj),则节点 i i i属于簇 j j j,记为 i j i_j ij。其中 a j i a_{ji} aji表示向量 a j a_j aj的第 i i i个元素。


第二步,计算每个节点的重要程度。记被试 s s s的第 j j j个子图为 G s j = ( ( V s ) i j , : , ( E s ) i j , i j ) G_{sj}=((V_s)_{i_j,:} , (E_s)_{i_j,i_j}) Gsj=((Vs)ij,:,(Es)ij,ij)。为每个子图计算ECC分数:

在这里插入图片描述

c s c_s cs为被试 s s s的真实标签; p ← ( p S + 1 ) / ( S + 2 ) p\gets(pS+1)/(S+2) p(pS+1)/(S+2),防止除数为0。

节点 k k k的重要程度计算如下所示:
在这里插入图片描述
节点的得分越高,越可能是生物标志。


二、实验

1.对比实验

在这里插入图片描述


2.可视化

假设:GNN模型的分类性能越好,那么找到生物标志的概率就越高。实验仅在训练集上做。

在这里插入图片描述
在这里插入图片描述
作者将这两个子图作为GNN的输入,重新训练了GNN模型,最终得到的分类准确率为78.9%。


3.鲁棒性

作者用了两个不同的脑谱图以及不同数量的簇重新做了实验,探讨不同的构图方式是否影响网络的可靠性。

在这里插入图片描述



  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值