克鲁斯卡尔算法

克鲁斯卡尔算法介绍
1)克鲁斯卡尔(Kruskal)算法, 是用来求加权连通图的最小生成树的算法。
2)基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路
3) 具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止

克鲁斯卡尔算法应用场景
克鲁斯卡尔算法公路问题文字描述:
公路问题文字描述
解决公路问题不能构成回路的问题,只需要判断要加入的边的两个顶点是否已经指向同一个终点。
终点:就是将所有顶点从小到大的顺序排列好之后,某个顶点的终点就是与他连通的最大顶点。

package com.kruskal;

import java.util.Arrays;

public class KruskalCase {
    private int edgeNum;  //边的个数
    private char[] verx;   //顶点的集合
    private int[][] matrix;  //邻接矩阵
    //使用inf表示两个顶点不连通
    private static final int INF = Integer.MAX_VALUE;

    public static void main(String[] args) {
        char[] verx = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        int[][] matrix = {
         /*A*/  {0, 12, INF, INF, INF, 16, 14},
         /*B*/  {12, 0, 10, INF, INF, 7, INF},
         /*C*/  {INF, 10, 0, 3, 5, 6, INF},
         /*D*/  {INF, INF, 3, 0, 4, INF, INF},
         /*E*/  {INF, INF, 5, 4, 0, 2, 8},
         /*F*/  {16, 7, 6, INF, 2, 0, 9},
         /*G*/  {14, INF, INF, INF, 8, 9, 0}
        };

        KruskalCase kruskal = new KruskalCase(verx,matrix);
        kruskal.print();

        EData[] edges = kruskal.getEdges();
        //未排序
        System.out.println(Arrays.toString(edges));
        kruskal.sortEdge(edges);
        System.out.println("排序后"+Arrays.toString(edges));

        kruskal.kruskal();
    }

    public KruskalCase(char[] verxtexs, int[][] matrix) {
        //初始化顶点个数和边的数量
        int vLen = verxtexs.length;
        //初始化顶点
        this.verx = new char[vLen];
        for (int i = 0; i < verxtexs.length; i++) {
            verx[i] = verxtexs[i];
        }

        //初始化边
        this.matrix = new int[vLen][vLen];
        for (int i = 0; i < vLen; i++) {
            for (int j = 0; j < vLen; j++) {
                this.matrix[i][j] = matrix[i][j];
            }
        }

        //统计边
        for (int i = 0; i < vLen; i++) {
            for (int j = i+1; j < vLen; j++) {
                if (this.matrix[i][j] != INF){
                    edgeNum++;
                }
            }
        }

    }//构造方法结束

    public void kruskal(){
        int index = 0;
        int[] ends = new int[edgeNum]; //用于保存”已有最小生成树“中的每个顶点在最小生成树中的终点
        //创建结果数组,保存最后的最小生成树
        EData[] rets = new EData[edgeNum];

        //获取图中边的集合,一共有12条边
        EData[] edges = getEdges();

        //按照边的权值从小到大排序
        sortEdge(edges);
        //遍历edges数组,将边添加到最小生成树中,判断准备加入的边是否形成了回路,如果没有,就加入rets,否则不能加入
        for (int i=0;i<edgeNum;i++){
            //获取到第i条边的第一个顶点(起点)
            int p1 = getPosition(edges[i].start);
            //获取到第i条边的第二个顶点
            int p2 = getPosition(edges[i].end);

            //获取p1在已有最小生成树中的终点
            int m = getEnd(ends,p1);
            //获取p2在已有最小生成树中的终点
            int n = getEnd(ends,p2);
            //是否构成回路
            if (m != n){
                ends[m] = n;
                rets[index++] = edges[i];   //有一条边加入rets
            }
        }

        //统计并打印“最小生成树”,输出rets
        System.out.println("最小生成树为");
        for (int i=0;i<index;i++){
            System.out.println(rets[i]);
        }
    }

    //打印邻接矩阵
    public void print(){
        System.out.println("打印临接矩阵:");
        for (int i=0;i<verx.length;i++){
            for (int j=0;j<verx.length;j++){
                System.out.printf("%12d",matrix[i][j]);
            }
            System.out.println();
        }
    }

    /**
     * 功能:对边进行排序,使用冒泡排序
     * @param edges  边的集合
     * */
    private void sortEdge(EData[] edges){//从小到大
        for (int i=0;i<edges.length-1;i++){
            for (int j=0;j< edges.length-1-i;j++){
                if (edges[j].weight > edges[j+1].weight){
                    EData tmp = edges[j];
                    edges[j] = edges[j+1];
                    edges[j+1] = tmp;
                }
            }
        }
    }

    /**
     * 返回顶点的下标,如果找不到就返回-1
     * @param ch 顶点的值,如'A'
     * */
    private int getPosition(char ch){
        for (int i=0;i<verx.length;i++){
            if (verx[i] == ch){
                return i;
            }
        }
        return -1;
    }

    /**
     * 功能:获取图中边,放到EData[]数组中,后面我们需要遍历该数组
     * 是通过matrix临接矩阵来获取
     * EData[] 形式:['A','B',12]
     * @return
     * */
    public EData[] getEdges(){
        int index = 0;
        EData[] edges = new EData[edgeNum];
        for (int i=0;i<verx.length;i++){
            for (int j=i+1;j<verx.length;j++){
                if (matrix[i][j] != INF){
                    edges[index++] = new EData(verx[i], verx[j], matrix[i][j]);
                }
            }
        }
        return edges;
    }

    /**
     * 功能;获取下标i的顶点的终点,用于判断后面两个顶点的
     * @param ends  数组就是记录了各个顶点对应的终点是哪个,ends数组在遍历过程中,逐渐形成
     * @param i     表示传入的顶点对应的下标
     * @return      返回的就是下标为i的这个顶点对应的终点的下标
     * */
    public int getEnd(int[] ends,int i){
        while (ends[i] != 0){
            i = ends[i];
        }
        return i;
    }

}

//创建一个EData类,它的对象实例为一条边
class EData{
    char start;  //边的一个顶点
    char end;    //边的另一个顶点
    int weight;  //边的权值

    public EData(char start, char end, int weight) {
        this.start = start;
        this.end = end;
        this.weight = weight;
    }

    @Override
    public String toString() {
        return "EData{" +
                "<" + start +
                ", " + end +
                " > = " + weight +
                '}';
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值