IOI2020集训队作业-24,25,26,27,28

24.2 AGC035F Two Histograms

考虑如何建立从可能得到的矩阵到 ( ( l 1 , l 2 ⋯ l m ) , ( k 1 , k 2 , ⋯ k n ) ) ((l_1,l_2\cdots l_m),(k_1,k_2,\cdots k_n)) ((l1,l2lm),(k1,k2,kn))的映射。

如果确定了 ( k 1 , k 2 , ⋯ k n ) (k_1,k_2,\cdots k_n) (k1,k2,kn),显然 ( l 1 , l 2 , ⋯ l m ) (l_1,l_2,\cdots l_m) (l1,l2,lm)也会唯一确定,所以下面只考虑确定 ( k 1 , k 2 ⋯ k n ) (k_1,k_2\cdots k_n) (k1,k2kn)

考虑最后一行,它一定是形如:(一段由1和2组成序列),2,(若干个【可能是0个】1形成的一段),0,(0和1组成的序列)。 k n k_n kn可以取到那一段1中的任何一个位置和那一段1之前的2的位置。我们规定让 k n k_n kn取到那个2的位置。接下来考虑第 n − 1 n-1 n1行,情况是类似的,我们也可以做出类似的规定。这样就建立起了一个映射。

而要求一组 ( l , k ) (l,k) (l,k)可以由一个矩阵通过这个映射得到,等价于要求不存在满足 k i = j , l j + 1 = i k_i = j, l_j + 1 =i ki=j,lj+1=i ( i , j ) (i,j) (i,j)。用容斥原理对合法的 ( l , k ) (l,k) (l,k)计数,得到的就是可能的不同的矩阵的数量。


25.2 CF671E Organizing a Race

为了避免混淆,下文用 l i m lim lim表示原题中的 k k k

如何判断 [ l , r ] [l,r] [l,r]是否合法:从 l l l开始往 r r r走,当汽油不够的时候就给当前城市加汽油使得恰好够走到下一个城市(也就是贪心地使加汽油的城市的位置尽量靠后);然后把剩下的汽油都加在 r r r,从 r r r l l l走判断是否能够走到 l l l

p r e i = p r e i − 1 + g i − 1 − w i − 1 , s u f i = s u f i − 1 + g i − w i − 1 pre_i = pre_{i-1}+g_{i-1}-w_{i-1},suf_i = suf_{i-1}+g_i-w_{i-1} prei=prei1+gi1wi1,sufi=sufi1+giwi1。则 i i i往右第一个无法到达的城市 x x x,就是第一个满足 p r e x − p r e i < 0 pre_x-pre_i<0 prexprei<0 x x x,我们记为 n e x t i = x next_i = x nexti=x,若 x x x不存在就记 n e x t i = n + 1 next_i = n+1 nexti=n+1。而且由于我们在 x − 1 x-1 x1加的油量是让我们“恰好可以走到 x x x”,所以从 i i i到达 x x x之后,再次出发时得到的油量就是 g x g_x gx,所以下一个走不到的点就是 n e x t x next_x nextx。将 n e x t i next_i nexti作为 i i i的父亲,会得到一个树形结构,并且 { n + 1 , n , n − 1 , n − 2 ⋯ 1 } \{n+1,n,n-1,n-2\cdots 1\} {n+1,n,n1,n21}是这棵树的一个dfs序。

对整棵树进行dfs,令当前走到的点为 l l l(也等价于从右到左枚举 l l l),并对每个点维护 g i ′ g_i' gi表示如果从 l l l出发要走到 i + 1 i+1 i+1需要在这个城市额外加的油量(根据第一段描述的贪心策略),以及相应的 s u f i ′ , c o s t i suf'_i,cost_i sufi,costi,其中 c o s t i = ∑ l ≤ k ≤ i g k ′ − g k cost_i = \sum_{l\le k \le i}g_k'-g_k costi=lkigkgk。从 n e x t i next_i nexti走到 i i i,会对 g k ′ , s u f k ′ , c o s t k g'_k,suf'_k,cost_k gk,sufk,costk造成的影响是:

  • g n e x t i − 1 ′ + = p r e [ i ] − p r e [ n e x t i ] g'_{next_i - 1}+=pre[i]-pre[next_i] gnexti1+=pre[i]pre[nexti]
  • s u f k ′ + = p r e [ i ] − p r e [ n e x t i ] ( ∀ k ≥ n e x t i − 1 ) suf'_k += pre[i] - pre[next_i] (\forall k \ge next_i - 1) sufk+=pre[i]pre[nexti](knexti1)
  • c o s t k + = p r e [ i ] − p r e [ n e x t i ] ( ∀ k ≥ n e x t i − 1 ) cost_k += pre[i] - pre[next_i] (\forall k \ge next_i-1) costk+=pre[i]pre[nexti](knexti1)

一个 r r r合法的充要条件就是 ( c o s t r − ( g r ′ − g r ) ) − min ⁡ l ≤ k < r { ( s u f r ′ − ( g r ′ − g r ) ) − s u f k ′ } ≤ l i m (cost_r-(g'_r-g_r)) - \min_{l\le k<r} \{(suf'_r-(g'_r-g_r))-suf'_k\} \le lim (costr(grgr))minlk<r{(sufr(grgr))sufk}lim c o s t r ≤ l i m cost_r\le lim costrlim,其中减去 g r ′ − g r g'_r-g_r grgr是因为我们并不需要到达 r + 1 r+1 r+1。上面的表达式等价于 max ⁡ l ≤ k < r { s u f k ′ } + c o s t r − s u f r ′ ≤ l i m ∧ c o s t r ≤ l i m \max_{l\le k<r}\{suf'_k\} + cost_r - suf'_r\le lim\wedge cost_r\le lim maxlk<r{sufk}+costrsufrlimcostrlim

由于每一次对 s u f r ′ , c o s t r suf'_r,cost_r sufr,costr的修改量是相同的,所以 c o s t r − s u f r ′ cost_r-suf'_r costrsufr对于每一个 r r r都是一个定值,我们只需要维护对 s u f ′ suf' suf的修改。在线段树上对 r r r二分,只要支持快速查询一个区间内的 min ⁡ { max ⁡ l ≤ k < r { s u f k ′ } + c o s t r − s u f r ′ } \min \{\max_{l\le k<r}\{suf'_k\} + cost_r - suf'_r\} min{maxlk<r{sufk}+costrsufr}就能够判定一个区间内是否存在合法的 r r r,这个用bzoj2957那道题的套路就可以维护。注意不能选择 c o s t r > l i m cost_r >lim costr>lim的那些 r r r,由于那些 r r r形成的是一段后缀,可以二分找出那段后缀的长度,然后对那段后缀的点的 s u f ′ suf' suf都加上 ∞ \infty

总时间复杂度 O ( n log ⁡ 2 n ) O(n\log^2 n) O(nlog2n)

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
#define PB push_back
#define MP make_pair
#define PII pair<int,int>
#define FIR first
#define SEC second
#define ll long long
using namespace std;
template <class T>
inline void rd(T &x) {
	x=0; char c=getchar(); int f=1;
	while(!isdigit(c)) { if(c=='-') f=-1; c=getchar(); }
	while(isdigit(c)) x=x*10-'0'+c,c=getchar(); x*=f;
}
#define ls (c<<1)
#define rs (c<<1|1)
const int N=1e5+10,M=N*4;
const ll inf=1e16;
ll sum[M],mx[M],mi[M],tg[M];
inline void add(int c,ll t) { tg[c]+=t,sum[c]+=t,mx[c]+=t; }
inline void push_down(int c) { if(tg[c]) add(ls,tg[c]),add(rs,tg[c]),tg[c]=0; }
ll query(int l,int r,int c,ll v) {
    if(l==r) return v+mi[c];
    int mid=l+r>>1; push_down(c);
    if(v<=mx[ls]) return min(query(l,mid,ls,v),sum[c]);
    return min(v+mi[ls],query(mid+1,r,rs,v));
}
void push_up(int c,int l,int r) {
    mx[c]=max(mx[ls],mx[rs]);
    int mid=l+r>>1; sum[c]=query(mid+1,r,rs,mx[ls]);
}
ll suf[N],pre[N];
void build(int l,int r,int c) {
    if(l==r) return (void)(mi[c]=-suf[l],mx[c]=suf[l],sum[c]=inf);
    int mid=l+r>>1;
    build(l,mid,ls),build(mid+1,r,rs);
    mi[c]=min(mi[ls],mi[rs]); push_up(c,l,r);
}
int ql,qr; ll qt;
void upd(int l,int r,int c) {
    if(ql<=l&&qr>=r) return add(c,qt);
    int mid=l+r>>1; push_down(c);
    if(ql<=mid) upd(l,mid,ls);
    if(qr>mid) upd(mid+1,r,rs);
    push_up(c,l,r);
}
int m,n,g[N],w[N];
int Q(int l,int r,int c,ll d) {
    if(query(l,r,c,d)>m) return 0;
    if(l==r) return l;
    int mid=l+r>>1,t=0; push_down(c);
    if(t=Q(mid+1,r,rs,max(d,mx[ls]))) return t;
    return Q(l,mid,ls,d);
}
void ins(int x,int f,int d) {
    if(f<=n) {
        ql=f-1,qr=n,qt=d*(pre[x]-pre[f]);
        upd(1,n,1);
    }
}
int st[N],top;
int main() {
    rd(n),rd(m);
    for(int i=1;i<n;++i) rd(w[i]);
    for(int i=1;i<=n;++i) rd(g[i]);
    for(int i=1;i<=n;++i) {
        pre[i]=pre[i-1]+g[i-1]-w[i-1];
        suf[i]=suf[i-1]+g[i]-w[i-1];
    }
    build(1,n,1);
    st[0]=n+1; int ans=0;
    for(int i=n;i>=1;--i) {
        while(top&&pre[st[top]]>=pre[i]) ins(st[top],st[top-1],-1),top--;
        ins(i,st[top],1); st[++top]=i;
        int lb=0,rb=top;
        while(lb<rb) {
            int mid=lb+rb>>1;
            if(pre[i]-pre[st[mid]]<=m) rb=mid;
            else lb=mid+1;
        }
        if(i>1) { ql=1,qr=i-1,qt=-inf; upd(1,n,1); }
        if(rb>1) { ql=st[rb-1]-1,qr=n,qt=inf; upd(1,n,1); }
        ans=max(ans,Q(1,n,1,-inf)-i+1);
        if(i>1) { ql=1,qr=i-1,qt=inf; upd(1,n,1); }
        if(rb>1) { ql=st[rb-1]-1,qr=n,qt=-inf; upd(1,n,1); }
        // cout<<i<<':'<<ans<<endl;
    }
    printf("%d",ans);
    return 0;
}

26.3 ARC095F Permutation Tree

我们令 q i q_i qi表示 i i i这个元素在 p p p中出现的位置。则建树的过程等价于是:对于每一个 i > 1 i>1 i>1,在 q i q_i qi max ⁡ j < i { q j } \max_{j<i}\{q_j\} maxj<i{qj}之间连一条边。

则得到的树的形态一定会有如下的形式:

26-3

其中蓝色的点是满足 ∀ j < i , q j < q i \forall j<i, q_j<q_i j<i,qj<qi的那些 q i q_i qi

找出树的直径,则每个点要么在直径上,要么与直径相邻,否则一定无解。

假设现在我们确定了树的层次结构(确定了哪个点是根,以及每个点的颜色),要确定一个最优的排列 p p p,策略应该是这样的:第 i i i层的蓝色点的 q i q_i qi是(它前面的层的点数 + 这一层的点数),而第 i i i层的那些黄色点的 q i q_i qi从(前面的层的点数 + 1)开始,依次递增取。以上面的图为例,我们得到的 q q q是这样的:1,3,2,7,4,5,6,10,8,9,15,11,12,13,14。

尽管对于一个具体的排列 q q q,我们建出来的树中,最后一个蓝色点可能是有儿子的;但是现在我们只知道树的形态,如果我们构造出来的最后一个蓝色点有儿子的话,让那个儿子成为蓝色点显然会得到更优的答案。所以第一个蓝色点和最后一个蓝色点分别是直径的两端。枚举哪一个是根,然后在两个答案中取一个更优的就可以了。

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
#define PB push_back
#define MP make_pair
#define FIR first
#define SEC second
#define ll long long
using namespace std;
template <class T>
inline void rd(T &x) {
	x=0; char c=getchar(); int f=1;
	while(!isdigit(c)) { if(c=='-') f=-1; c=getchar(); }
	while(isdigit(c)) x=x*10-'0'+c,c=getchar(); x*=f;
}
const int N=1e5+10;
int n;
vector<int> G[N];
int mxd,cur;
void dfs1(int u,int last,int d) {
	if(d>mxd) mxd=d,cur=u;
	for(int i=0;i<G[u].size();++i)
		if(G[u][i]!=last) dfs1(G[u][i],u,d+1);
}
int st[N],top;
int mk[N];
vector<int> L;
void dfs2(int u,int last,int T) {
	st[++top]=u;
	if(u==T) {
		for(int i=1;i<=top;++i) mk[st[i]]=1,L.PB(st[i]);
	}
	for(int i=0;i<G[u].size();++i)
		if(G[u][i]!=last) dfs2(G[u][i],u,T);
	top--;
}
void sol(int *P) {
	int m=0;
	P[++m]=1;
	for(int i=1;i+1<L.size();++i) {
		int l=m+1,r=m+G[L[i]].size()-1;
		P[++m]=r;
		for(int j=l;j<r;++j) P[++m]=j;
	}
	P[++m]=n;
}
int P[N],Q[N];
int main() {
	rd(n);
	for(int i=1,x,y;i<n;++i) rd(x),rd(y),G[x].PB(y),G[y].PB(x);
	mxd=-1; dfs1(1,0,0); int L1=cur;
	mxd=-1; dfs1(cur,0,0); int L2=cur;
	dfs2(L1,0,L2);
	for(int i=1;i<=n;++i) {
		int flg=mk[i];
		for(int j=0;!flg&&j<G[i].size();++j)
			flg|=mk[G[i][j]];
		if(!flg) {
			printf("-1");
			return 0;
		}
	}
	sol(P);
	reverse(L.begin(),L.end());
	sol(Q);
	for(int i=1;i<=n;++i)
		if(P[i]!=Q[i]) {
			if(P[i]>Q[i]) swap(P,Q);
			break;
		}
	for(int i=1;i<=n;++i) Q[P[i]]=i;
	for(int i=1;i<=n;++i) printf("%d ",Q[i]);
	return 0;
}

28.1 CF585E Present for Vitalik the Philatelist

答案等价于(用 gcd ⁡ ( S ) \gcd(S) gcd(S)表示 S S S集合中的数的 gcd ⁡ \gcd gcd):

∑ S ∣ S ∣ ⋅ [ gcd ⁡ ( S ) = 1 ] − ∑ S ( n − ∣ S ∣ ) ⋅ [ gcd ⁡ ( S ) = 1 ] = 2 ⋅ ∑ S ∣ S ∣ ⋅ [ gcd ⁡ ( S ) = 1 ] − n ∑ S [ gcd ⁡ ( S ) = 1 ] \sum_S |S|\cdot [\gcd(S)=1] - \sum_S (n-|S|) \cdot [\gcd(S)=1] \\ = 2\cdot \sum_S |S|\cdot [\gcd(S)=1] - n\sum_S [ \gcd(S)=1] SS[gcd(S)=1]S(nS)[gcd(S)=1]=2SS[gcd(S)=1]nS[gcd(S)=1]

A d A_d Ad表示 ∑ i [ d ∣ a i ] \sum_i [d\mid a_i] i[dai] A A A可以在 O ( max ⁡ { a i } ) O(\max\{a_i\}) O(max{ai})的时间通过高维前缀和求出。

∑ S [ gcd ⁡ ( S ) = 1 ] \sum_S[\gcd(S)=1] S[gcd(S)=1]直接莫比乌斯反演得到 ∑ d ( 2 A d − 1 ) μ ( d ) \sum_d (2^{A_d}-1)\mu(d) d(2Ad1)μ(d)

∑ S ∣ S ∣ ⋅ [ gcd ⁡ ( S ) = 1 ] \sum_S |S|\cdot [\gcd(S)=1] SS[gcd(S)=1]等价于 ∑ i ∑ a i ∈ S [ gcd ⁡ ( S ) = 1 ] \sum_i \sum_{a_i\in S} [ \gcd(S)=1] iaiS[gcd(S)=1],反演得到 ∑ d μ ( d ) ⋅ 2 A d − 1 ⋅ A d \sum_d \mu(d)\cdot 2^{A_d-1} \cdot A_d dμ(d)2Ad1Ad

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
#define PB push_back
#define MP make_pair
#define PII pair<int,int>
#define FIR first
#define SEC second
#define ll long long
using namespace std;
template <class T>
inline void rd(T &x) {
	x=0; char c=getchar(); int f=1;
	while(!isdigit(c)) { if(c=='-') f=-1; c=getchar(); }
	while(isdigit(c)) x=x*10-'0'+c,c=getchar(); x*=f;
}
const int M=1e7+10,N=5e5+10;
const int mod=1e9+7;
int pri[M],mu[M],num;
void getpri(int n) {
    static int d[M];
    mu[1]=1;
    for(int i=2;i<=n;++i) {
        if(!d[i]) pri[d[i]=++num]=i,mu[i]=-1;
        for(int j=1;j<=d[i]&&pri[j]*i<=n;++j) {
            d[i*pri[j]]=j;
            if(j!=d[i]) mu[i*pri[j]]=-mu[i];
        }
    }
}
int n,a[N],d[M],m;
int pw[N];
int main() {
    getpri(m=10000000);
    rd(n);
    for(int i=1;i<=n;++i) rd(a[i]),d[a[i]]++;
    for(int j=1;j<=num;++j)
        for(int i=m/pri[j]*pri[j];i;i-=pri[j]) if(d[i])
            d[i/pri[j]]+=d[i];
    pw[0]=1; for(int i=1;i<=n;++i) pw[i]=pw[i-1]*2ll%mod;
    int ans1=0,ans2=0;
    for(int i=1;i<=m;++i) if(d[i]) {
        if(mu[i]) ans2=(ans2+mu[i]*(pw[d[i]]-1))%mod;
        ans1=(ans1+mu[i]*pw[d[i]-1]*(ll)d[i])%mod;
    }
    int ans=(ans1*2ll-ans2*(ll)n)%mod;
    printf("%d",(ans+mod)%mod);
    return 0;
}

28.2 AGC032C Three Circuits

如果存在度数为奇数的点显
然是No

如果有点的度数大于等于 6 6 6,说明这张图的欧拉回路会经过这个点至少三次,可以直接通过把欧拉回路拆成环来构造,所以答案是Yes

接下来考虑所有点的度数都是 4 4 4或者 2 2 2的情况。

如果有至少三个点的度数为 4 4 4,答案是Yes。用 A , B , C A,B,C A,B,C分别表示三个点,找出一条欧拉回路,将回路从每一次经过 A A A的地方断开得到两个不相交的环。如果 B B B或者 C C C在同一个环上出现过两次,就可以把那个环从 B B B或者 C C C两次出现的位置断开得到两个环;否则,每个环上 B , C B,C B,C恰好出现了一次,所以 B , C B,C B,C之间, A , B A,B A,B之间, C , A C,A C,A之间都存在两条边不相交的路径,可以构造 A → B → A , B → C → B , C → A → C A\to B\to A,B\to C\to B,C\to A\to C ABA,BCB,CAC这三个环。

如果只有两个点度数为 4 4 4,我们首先把度为 2 2 2的点缩成一条边,那么就只有这样两种情况:

  • 边集为: ( 1 , 2 ) , ( 1 , 2 ) , ( 1 , 1 ) , ( 2 , 2 ) (1,2),(1,2),(1,1),(2,2) (1,2),(1,2),(1,1),(2,2),答案是Yes,构造 ( 1 , 2 ) , ( 2 , 1 ) (1,2),(2,1) (1,2),(2,1) ( 1 , 1 ) (1,1) (1,1) ( 2 , 2 ) (2,2) (2,2)即可得到三个环。
  • 边集为: ( 1 , 2 ) , ( 1 , 2 ) , ( 1 , 2 ) , ( 1 , 2 ) (1,2),(1,2),(1,2),(1,2) (1,2),(1,2),(1,2),(1,2),此时答案是No

若度数为 4 4 4的点数小于 2 2 2,答案显然是No

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
#define FAIL {printf("No");exit(0);}
#define SUCC {printf("Yes");exit(0);}
#define PB push_back
#define MP make_pair
#define PII pair<int,int>
#define FIR first
#define SEC second
#define ll long long
using namespace std;
template <class T>
inline void rd(T &x) {
	x=0; char c=getchar(); int f=1;
	while(!isdigit(c)) { if(c=='-') f=-1; c=getchar(); }
	while(isdigit(c)) x=x*10-'0'+c,c=getchar(); x*=f;
}
const int N=1e5+10;
vector<int> G[N],S;
int n,m,vis[N];
int dfs(int u,int last) {
    if(vis[u]) return vis[u];
    for(int i=0;i<G[u].size();++i)
        if(G[u][i]!=last) return vis[u]=dfs(G[u][i],u);
}

int main() {
    rd(n),rd(m);
    for(int i=1;i<=m;++i) {
        int x,y; rd(x),rd(y);
        G[x].PB(y),G[y].PB(x);
    }
    for(int i=1;i<=n;++i) if(G[i].size()&1) FAIL;
    for(int i=1;i<=n;++i) if(G[i].size()>=6) SUCC;
    for(int i=1;i<=n;++i) if(G[i].size()==4) S.PB(i);
    if(S.size()>=3) SUCC;
    if(S.size()<2) FAIL;
    int s=S[0],t=S[1];
    vis[s]=1,vis[t]=2;
    for(int i=1;i<=n;++i) if(!vis[i]) {
        if(dfs(G[i][0],i)==dfs(G[i][1],i)) SUCC;
        vis[i]=3;
    }
    FAIL;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值