描述:
一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入:n = 2
输出:2
示例 2:
输入:n = 7
输出:21
示例 3:
输入:n = 0
输出:1
提示:
0 <= n <= 100
来源:力扣(LeetCode)
代码:
class Solution {
//利用斐波那契数列会超出限制
//要利用非递归的方式进行计算
public int numWays(int n) {
if(n==0){
return 1;
}if(n<3){
return n;
}
int[] dp=new int[n+1];
dp[1]=1;
dp[2]=2;
for(int i=3;i<=n;i++){
dp[i]=dp[i-1]+dp[i-2];
dp[i]=dp[i]%1000000007;
}
return dp[n];
}
}
思路:
利用了递归的思想,但是递归操作重复太多,会超时。所以采用非递归的方法,思路就是 假如有五阶台阶 可以看做 4+3 。。。。。。。一直到 三阶时候 可以看做2+1.
性能:
解法更新:
class Solution {
public int numWays(int n) {
if(n==0){
return 1;
}if(n<3){
return n;
}
int d1=1;
int d2=2;
int sum=0;
for(int i=3;i<=n;i++){
sum=(d1+d2)%1000000007;
d1=d2;
d2=sum;
}
return d2;
}
}
斐波那契数列的不同表现形式 有别于最常见的表现形式