机器学习
文章平均质量分 97
Radar_LFM
积累知识,分享经验。专注于matlab信号处理,当前在雷达领域深耕。
展开
-
密度峰值聚类算法(DPC)
通过学习密度峰值聚类算法(DPC),掌握算法的原理及其优缺点,对改进方法的论文进行总结,最后给出了MATLAB代码实现该算法。原创 2021-11-22 16:33:59 · 25857 阅读 · 2 评论 -
【SVM回归预测】基于LibSVM实现多特征数据的预测
本文介绍了如何利用机器学习中的SVM算法来解决生活中的问题,通过获取影响电动车价格的数据来建立一个预测电动车价格的模型。原创 2021-10-22 19:08:56 · 8627 阅读 · 16 评论 -
朴素贝叶斯(Naive Bayes)
本博客首先介绍了概率论的基础知识,然后推导出贝叶斯公式,再逐步推导出朴素贝叶斯分类器的表达式。文中链接处有实现朴素贝叶斯分类器的MATLAB源代码,供大家免费下载。原创 2020-12-27 10:55:55 · 2310 阅读 · 1 评论 -
MATLAB自带PCA函数的参数含义及使用方法
目录1.PCA函数的输入与输出参数2.PCA函数的使用方法1.PCA函数的输入与输出参数function [coeff, score, latent, tsquared, explained, mu] = pca(x,varargin)输入参数:X,数据集,假设样本的个数为N,每个样本的特征个数为P,则 X是N×P的矩阵。输出参数:COEFF,返回N×P数据矩阵X的主成分系数。X的行对应于观测值,列对应于变量。每列系数包含一个主成分的系数。各列按成分方差(潜在)降序排列。默认原创 2020-12-21 15:57:30 · 26934 阅读 · 8 评论 -
MVO优化DBSCAN实现聚类
本博文利用MVO优化DBSCAN实现聚类。首先介绍一种启发式的优化算法——多元宇宙优化(MVO),其次介绍基于密度的聚类算法——DBSCAN,接着,针对DBSCAN聚类存在参数Eps选取困难的问题,利用MVO优化DBSCAN,找到最合适的参数Eps,从而达到最合适的聚类效果。原创 2020-11-02 15:37:56 · 5684 阅读 · 13 评论 -
数据预处理之中心化和归一化
目录1.背景2.目的3.原理4.意义5.标准化(归一化)优点及其方法6.归一化方法使用场景参考文献在机器学习中为了解决分类和回归问题,通常需要对原始数据进行中心化与标准化处理。1.背景在数据挖掘和数据处理过程中,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。2.目的通过中心化和标原创 2020-10-21 09:47:49 · 3691 阅读 · 0 评论 -
原型聚类算法之K均值
目录1.简介2.原理3.算法步骤4.MATLAB代码参考文献1.简介"原型"是指样本空间中具有代表性的点。原型聚类可以描述为对样本空间中具有代表性的点进行分类,即剔除样本空间中一些异常点或噪声点。k均值是一种无监督学习的算法,聚类效果较好,应用也比较广泛。2.原理3.算法步骤4.MATLAB代码% k均值算法的MATLAB实现clear all;close all;clc;tic;% 第一组数据mu1=[0 0 ]; %均值S1=[.原创 2020-10-20 11:02:48 · 922 阅读 · 5 评论 -
有监督学习、无监督学习、半监督学习和强化学习的总结
机器学习是数据分析和数据挖掘中一种比较常见且有效的方法,机器学习分为四大类,分别是有监督学习、无监督学习、半监督学习和强化学习。1.有监督学习概念:将包含特征和标签信息的样本作为训练样本,通过训练样本训练得到一个最优模型,再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现预测和分类的目的,也就具有了对未知数据进行预测和分类的能力。常见算法:分类算法(KNN、朴素贝叶斯、SVM、决策树、随机森林、BP神经网络算法等)和回归算法(逻辑回归、线性回归等)。应用场景:分类和回归原创 2020-10-08 18:09:42 · 6938 阅读 · 0 评论 -
PSO-LSSVM算法及其MATLAB代码
一、PSO1.概念粒子群优化算法(PSO:Particle swarm optimization)是一种进化计算技术。它的基本思想:通过群体中个体之间的协作和信息共享来寻找最优解。2.算法的原理和实现步骤2.1算法原理PSO初始化为一群随机粒子(随机解),然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。PSO算法的主要公式2.2实现步骤1)初始化一群微粒(原创 2020-10-05 11:13:06 · 13940 阅读 · 41 评论 -
KNN算法及其MATLAB代码
一、KNN算法原理1.算法概述k近邻(k-Nearest Neighbor,简称kNN)学习是一种常用的监督学习方法,其工作机制非常简单:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后基于这k个"邻居"的信息来进行预测。通常,在分类任务中可使用"投票法"即选择这k个样本中出现最多的类别标记作为预测结果;在回归任务中时使用"平均法",即将这k个样本的实值输出标记的平均值作为预测结果;还可基于距离远近进行加权平均或加权投票,距离越近的样本权重越大。kNN算法的指导思想是“近原创 2020-09-16 14:47:04 · 9398 阅读 · 0 评论