(49)MATLAB实现迫零均衡器原理与代码


前言

使用MATLAB实现迫零均衡器。给出完整的MATLAB设计源代码。


一、迫零均衡器设计说明

理想的迫零均衡器有无限多个抽头权系数,是不能实现的,本文考虑有2M+1个抽头权系数的横向线性均衡滤波器。具体理论推导可以参考《现代数字信号处理》方面的书籍。

最小二乘法可用于求解形式为Hw=δk0的超定线性方程组,即H矩阵是一个矩形(L+N−1)×N矩阵,其中方程多于未知数((L+N-1)>N)。
当H的列线性独立时,迫零均衡器系数w的解是唯一的,由下式给出:

在这里插入图片描述

ZF均衡器的MSE可以写成:
在这里插入图片描述

使MSE最小化的最佳延迟只是矩阵HH+的最大对角元素的索引:
在这里插入图片描述

下面给出这个例子的MATLAB源代码。

二、迫零均衡器MATLAB源代码

1.函数说明

【函数功能】
为给定的信道冲激响应h设计一个迫零均衡器w,期望的均衡器长度为N,均衡器延迟为delay。
同时返回均衡器误差(err)和最佳优化延迟(optDelay),该延迟对于设计的均衡器可能效果最好。
【参数说明】
h - 给定的信道冲激响应。
N - 期望的均衡器长度,即抽头数。
辅助参数varargin - 均衡器延迟(delay),可选参数。
【返回值说明】
w - 所设计的迫零均衡器。
err - 均衡器误差。
optDelay - 最佳优化延迟,该延迟对于设计的均衡器可能性能最好。

2.代码实现

function [w,err,optDelay] = zf_equalizer(h,N,varargin)
    h = h';                             % 信道冲激响应
    L = length(h);                      % 信道冲激响应的长度
    H = convMatrix(h,N);                % 生成卷积矩阵
    
    % 基于MSE计算最优时延
    Hp = inv(H'*H)*H';                  % 求Moore Penrose伪逆

    [~,optDelay] = max(diag(H*Hp));     % 基于MSE计算最优时延
    optDelay = optDelay - 1;            % MATLAB索引从1开始
    
    if nargin == 2
        k0 = optDelay;
    elseif nargin == 3                  %3个参数是设置的固定延迟
        delay = varargin{1};
        if delay >=(L+N-1)
            error('Too large delay!');
        end
        k0 = delay;                     % 此时,均衡器的延迟k0使用所设置的延迟
    else
        error('The number of actual parameters is incorrect.');
    end
    
    d = zeros(N+L-1,1);
    d(k0+1) = 1;                        % 均衡器最优延迟的位置
    w = Hp*d;                           % 最小二乘法解
    MSE = 1 - d'*H*Hp*d;                % 均方误差
    err = MSE;
end

3.辅助函数

函数功能:从大小为N的输入矩阵h构造大小为(N+p-1)x p的卷积矩阵。
代码如下:

function [H]=convMatrix(h,p)
    h = h(:).';
    col = [h zeros(1,p-1)];
    row = [h(1) zeros(1,p-1)];
    H = toeplitz(col,row);
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值