Nowcoder 5

在这里插入图片描述
解析:

A选项起泡算法:相邻元素两两比较,一个元素大于右侧相邻元素交换位置,否则位置不变。
一趟排序为:46,56,38,40,79,84
B选项直接插入:每一步将一个待排序的记录,插入到前面已经排好序的有序序列中去,直到插完所有元素为止。
一趟排序为:38,40,46,79,56,84
C选项快速:挑选一个基准元素,大于基准元素的放在其右边,小于基准元素的放在其左边,从而拆分为两部分,以此类推直到不可拆分为止。
以源数据第一个元素46为基准,采用双边循环法设置left和right两个指针指向数组最左和最右两端,从右指针开始,如果大于或等于基准元素则指针向左移动,如果小于基准元素则停止。转向left指针向右移动如果小于或等于基准元素则继续向右移动,如果大于基准元素则停止。交换两指针元素后,右指针继续上述操作比较,直到最后把基准元素和两指针重复元素交换位置。第一趟排序结束得出如下排序,所以C正确。
一趟排序为:40,38,46,56,79,84
D选项2-路归并:将一个数组分成两个数组,分别对两个数组进行排序,循环第一步,直到划分出来的“小数组”只包含一个元素,只有一个元素的数组默认为已经排好序
一趟排序为:46,56,79合并;38,40,84合并

在这里插入图片描述
解析:

概念: 每次从无序表中取出第一个元素,把它插入到有序表的合适位置,使有序表仍然有序。
特点: 直接插入排序属于稳定的排序,最坏 时间复杂性 为O(n^2), 空间复杂度 为O(1)。 最好情况下的时间复杂度为 O(n)

在这里插入图片描述
解析:

(1)冒泡排序

    冒泡排序就是把小的元素往前调或者把大的元素往后调。比较是相邻的两个元素比较,交换也发生在这两个元素之间。所以,如果两个元素相等,我想你是不会再无聊地把他们俩交换一下的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。

(2)选择排序

  选择排序是给每个位置选择当前元素最小的,比如给第一个位置选择最小的,在剩余元素里面给第二个元素选择第二小的,依次类推,直到第n-1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。那么,在一趟选择,如果当前元素比一个元素小,而该小的元素又出现在一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。比较拗口,举个例子,序列5 8 5 2 9, 我们知道第一遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是一个稳定的排序算法。

(3)插入排序
插入排序是在一个已经有序的小序列的基础上,一次插入一个元素。当然,刚开始这个有序的小序列只有1个元素,就是第一个元素。比较是从有序序列的末尾开始,也就是想要插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面,否则一直往前找直到找到它该插入的位置。如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。

(4)快速排序
快速排序有两个方向,左边的i下标一直往右走,当a[i] <= a[center_index],其中center_index是中枢元素的数组下标,一般取为数组第0个元素。而右边的j下标一直往左走,当a[j] > a[center_index]。如果i和j都走不动了,i <= j, 交换a[i]和a[j],重复上面的过程,直到i>j。 交换a[j]和a[center_index],完成一趟快速排序。在中枢元素和a[j]交换的时候,很有可能把前面的元素的稳定性打乱,比如序列为 5 3 3 4 3 8 9 10 11, 现在中枢元素5和3(第5个元素,下标从1开始计)交换就会把元素3的稳定性打乱,所以快速排序是一个不稳定的排序算法,不稳定发生在中枢元素和a[j]交换的时刻。

(5)归并排序
归并排序是把序列递归地分成短序列,递归出口是短序列只有1个元素(认为直接有序)或者2个序列(1次比较和交换),然后把各个有序的段序列合并成一个有序的长序列,不断合并直到原序列全部排好序。可以发现,在1个或2个元素时,1个元素不会交换,2个元素如果大小相等也没有人故意交换,这不会破坏稳定性。那么,在短的有序序列合并的过程中,稳定是是否受到破坏?没有,合并过程中我们可以保证如果两个当前元素相等时,我们把处在前面的序列的元素保存在结果序列的前面,这样就保证了稳定性。所以,归并排序也是稳定的排序算法。

(6)基数排序
基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序,最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序基于分别排序,分别收集,所以其是稳定的排序算法。

(7)希尔排序(shell)
希尔排序是按照不同步长对元素进行插入排序,当刚开始元素很无序的时候,步长最大,所以插入排序的元素个数很少,速度很快;当元素基本有序了,步长很小,插入排序对于有序的序列效率很高。所以,希尔排序的时间复杂度会比o(n^2)好一些。由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以shell排序是不稳定的。

(8)堆排序
我们知道堆的结构是节点i的孩子为2i和2i+1节点,大顶堆要求父节点大于等于其2个子节点,小顶堆要求父节点小于等于其2个子节点。在一个长为n的序列,堆排序的过程是从第n/2开始和其子节点共3个值选择最大(大顶堆)或者最小(小顶堆),这3个元素之间的选择当然不会破坏稳定性。但当为n/2-1, n/2-2, …1这些个父节点选择元素时,就会破坏稳定性。有可能第n/2个父节点交换把后面一个元素交换过去了,而第n/2-1个父节点把后面一个相同的元素没有交换,那么这2个相同的元素之间的稳定性就被破坏了。所以,堆排序不是稳定的排序算法

在这里插入图片描述

在这里插入图片描述

解析:

循环队列的相关条件和公式:
队尾指针是rear,队头是front,其中QueueSize为循环队列的最大长度
1.队空条件:rearfront
2.队满条件:(rear+1) %QueueSIze
front
3.计算队列长度:(rear-front+QueueSize)%QueueSize
4.入队:(rear+1)%QueueSize
5.出队:(front+1)%QueueSize

在这里插入图片描述
解析:

因为从A[0][0]算起,所以A[10][5]是11行6列。如果是按行存储,那么A[i][j]的地址就是:从0到i-1有i行,每行5个元素,再加上第i行的j个元素。所以最后的地址就是1000+5*i+j

在这里插入图片描述
解析:

在这里插入图片描述
因为堆排序需要构建堆,所以比较次数是要多于快速排序的!

在这里插入图片描述
解析:

A:直接选择排序中存在着不相邻元素之间的互换,因此,直接选择排序是一种不稳定的排序方法。 A错
B:哈夫曼树定义 给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。B对
C:我查找资料说有序指的是 不是结点的值有序,是结点的逻辑先后关系保持有序 C错
D:属于堆排序过程

所以选择 D
在这里插入图片描述
解析:

A选项,如果是数组只要遍历一半元素就可以了,翻转的思想类似于字符串逆序,但链表如果要完成逆序,就算只是修改指针也要把所有的元素遍历完,所以相比而言数组还是比链表快的。
B链表只需插入一个节点,数组需移动n个元素
C选项的访问中间节点,数组可以通过array[length/2]访问,链表需要依次查找到中间节点。
D头结点都一样
E 数组是顺序存储的线性表,相对于链表而言主要的优点就是可以通过下标随机访问数组中的任意元素。

在这里插入图片描述

解析:

a、数组是能被Object 一切能被Obj 接收的均为对象;
b、数组不是原生类 原生类有8种, int double boolean float byte short long char ;
c、语法错误、
d、数组的大小一开始就已经确定了 int[]test=new test[2];

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值