GNN8.1 FedGNN (PaperReading)

FedGNN (KDD’ 21)

  • FedGNN: Federated Graph Neural Network for Privacy-Preserving Recommendation

Introduction

  • Centraized Learning & Decentralized Learning
    在这里插入图片描述

  • Challenges:

    1. For most users, the volume of interaction data on their devices is too small to locally train accurate GNN models.
    2. The local GNN model trained on local user data may convey private information, and it is challenging to protect user privacy when synthesizing the global GNN model from the local ones.
    3. The local user data only contains first-order user-item interactions, and users’ interaction items cannot be directly exchanged due to privacy restrictions.

Methodology

  • Problem Formulation
    • Users: U = { u i , u 2 , … , u P } \mathcal{U} = \{u_i, u_2, \dots, u_P\} U={ui,u2,,uP}
    • Items: T = { t i , t 2 , … , t Q } \mathcal{T} = \{t_i, t_2, \dots, t_Q\} T={ti,t2,,tQ}
    • Rating matrix: Y ∈ R P × Q Y \in \mathtt{R}^{P \times Q} YRP×Q
    • bipartite useritem graph: G \mathcal{G} G
    • u i u_i ui has interactions with K K K items: [ t i , 1 , t i , 2 , … , t i , K ] [t_{i,1},t_{i,2},\dots,t_{i,K}] [ti,1,ti,2,,ti,K]; the ratings that given to these items: [ y i , 1 , y i , 2 , … , y i , K ] [y_{i,1},y_{i,2},\dots,y_{i,K}] [yi,1,yi,2,,yi,K]
  • FedGNN Framework
    • u i u_i ui -> Embedding -> e i u e_i^u eiu -> GNN -> h i u h_i^u hiu
    • Item nodes [ t i , 1 , t i , 2 , … , t i , K ] [t_{i,1},t_{i,2},\dots,t_{i,K}] [ti,1,ti,2,,ti,K] -> Embedding -> [ e i , 1 t , e i , 2 t , … , e i , K t ] [e^t_{i,1},e^t_{i,2},\dots,e^t_{i,K}] [ei,1t,ei,2t,,ei,Kt] -> GNN -> [ h i , 1 t , h i , 2 t , … , h i , K t ] [h^t_{i,1},h^t_{i,2},\dots,h^t_{i,K}] [hi,1t,hi,2t,,hi,Kt]
    • Neighboring user node [ u i , 1 , u i , 2 , … , u i , N ] [u_{i,1},u_{i,2},\dots,u_{i,N}] [ui,1,ui,2,,ui,N] -> Embedding -> [ e i , 1 u , e i , 2 u , … , e i , K u ] [e^u_{i,1},e^u_{i,2},\dots,e^u_{i,K}] [ei,1u,ei,2u,,ei,Ku] -> GNN -> [ h i , 1 u , h i , 2 u , … , h i , K u ] [h^u_{i,1},h^u_{i,2},\dots,h^u_{i,K}] [hi,1u,hi,2u,,hi,Ku]
    • Loss function: L i = 1 K Σ j = 1 K ∣ y ^ i , j − y i , j ∣ \mathcal{L}_i = \frac{1}{K} \Sigma_{j=1}^K \vert \hat{y}_{i,j} - y_{i,j} \vert Li=K1Σj=1Ky^i,jyi,j
    • Gradients of model: g i m g_i^m gim
    • Gradients of embeddings: g i e g_i^e gie
    • g i = ( g i m , g i e ) g_i =(g_i^m, g_i^e) gi=(gim,gie)
  • Privacy-Preserving Model Update
    • sample M M M items that the user has not interacted with, and randomly generate their gradients g i p g_i^p gip using a Gaussian distribution with the same mean and co-variance values with the real item embedding gradients.
    • g i = ( g i m , g i e , g i p ) g_i =(g_i^m, g_i^e, g_i^p) gi=(gim,gie,gip)
    • LDP: g i = c l i p ( g i , δ ) + L a p l a c e ( 0 , λ ) g_i = clip(g_i,\delta) + Laplace(0,\lambda) gi=clip(gi,δ)+Laplace(0,λ)
  • Privacy-Preserving User-Item Graph Expansion
    在这里插入图片描述

在这里插入图片描述

  • Analysis on Privacy Protection
    • If the recommendation server colludes with the third-party server by exchanging the private key and item table, the user interaction history will not be protected.
    • The accuracy of model gradients will also be affected if the privacy budget is too small. Thus, we need to properly choose both hyperparameters to balance model performance and privacy protection.
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值