ZKP7.3 Linear-time encodable code based on expanders

ZKP学习笔记

ZK-Learning MOOC课程笔记

Lecture 7: Polynomial Commitments Based on Error-correcting Codes (Yupeng Zhang)

7.3 Linear-time encodable code based on expanders

  • SNARKs with linear prover time
    在这里插入图片描述

  • Linear-time encodable code [Spielman’96][Druk-Ishai’14]

    • Bi-parties graph
      在这里插入图片描述

    • Left nodes: message

    • Right nodes: codeword = sum of the connected node in the left (summation of the values of the its neighbers)

  • Lossless Expander
    在这里插入图片描述

  • In the real definition, we just relax the conditions
    在这里插入图片描述

  • Overview of the recursive encoding
    在这里插入图片描述

    • A = 1 / 2 \Alpha = 1/2 A=1/2 means the number of right nodes is the half of the left nodes.
    • How to encode a 2/k message into 2k codeword c 1 c_1 c1
      • Recursive encoding! Use the same procedure.
        在这里插入图片描述

在这里插入图片描述

- constant relative distance: $\Delta' = min{\Delta, \frac{\delta}{4g}}$
  - Proof
    - Recall

在这里插入图片描述

    - Prove

在这里插入图片描述

  • How to construct the lossless expander in practise
    • [Capalbo-Reingold-Vadhan-Wigderson’2002]: Explicit construction of lossless expander (large hidden constant)
      • Random sampling: 1/poly(n) failure probability
    • Brakedown [Golovnev-Lee-Setty-Thaler-Wahby’21]: random summations with better concrete distance analysis
    • Orion [Xie-Zhang-Song’22]: expander testing with a negligible failure probability via maximum density of the graph
  • Putting everything together
    • Polynomial commitment (and SNARK) based on linear code
    • Pros:
      • Transparent setup: O(1)
      • Commit and Prover time: O(d) field additions and multiplications
      • Plausibly post-quantum secure
      • Field agnostic
    • Cons:
      • Proof size: O( d \sqrt{d} d )
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值