D. Fox And Jumping
题意:在一个无限长的纸条上,给出n个卡片,每个卡片都有有两个属性l,c。我们可以花费c得到这个卡片,就能够用这张卡片来向左或者向右移动l的距离,问最小的代价使可以到达枝条上的全部点。
思路:我们可以把纸条想象成坐标轴,起始位置为0,这样我们花费 c i c_i ci得到卡片 i i i,就相当于能够写作 0 + ∑ i = 1 k x i × l i ( k 未 知 , x i 为 一 个 常 数 ) 0+\sum_{i=1}^kx_i\times l_i(k未知,x_i为一个常数) 0+∑i=1kxi×li(k未知,xi为一个常数)。这样一来我们要遍历到每个点的话,就要使 ∑ i = 1 k x i × l i = 1 \sum_{i=1}^kx_i\times l_i=1 ∑i=1kxi×li=1,根据裴蜀定理,我们就要得到 g c d ( l 1 , l 2 , . . . l k ) = 1 gcd(l_1,l_2,...l_k)=1 gcd(l1,l2,...lk)=1的一组卡片。
我们就要找到最小花费的组合使 g c d = 1 gcd = 1 gcd=1(动态规划)。
我们设 d p [ i ] dp[i] dp[i]表示: g c d = i gcd = i gcd=i的最小花费。 i i i不是连续的而且可能很大,就用 m a p map map来搞。
C o d e Code Code
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 310;
int l[N], c[N];
map<int, int> dp;
int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
int n;
cin >> n;
for(int i=1; i<=n; i++) cin >> l[i];
for(int i=1; i<=n; i++) cin >> c[i];
for(int i=1; i<=n; i++) {
dp[l[i]] = dp[l[i]] ? min(dp[l[i]], c[i]) : c[i];
for(auto it : dp) {
int g = __gcd(l[i], it.first);
int C = dp[l[i]] + it.second;
dp[g] = dp[g] ? min(dp[g], C) : C;
}
}
cout << (dp[1] ? dp[1] : -1);
return 0;
}