费马小定理
问题:
对 ∀ ( a , p ) = 1 , p 是 质 数 ∃ a p − 1 ≡ 1 ( m o d p ) 对\forall(a,p)=1,p是质数\\ \exists~a^{p-1}\equiv1(mod~p)\\ 对∀(a,p)=1,p是质数∃ ap−1≡1(mod p)
证明
先来第一个引理:
如
果
(
c
,
m
)
=
1
,
a
c
≡
b
c
(
m
o
d
m
)
则
a
≡
b
(
m
o
d
m
)
如果(c,m)=1, ac\equiv bc(mod~m)\\ 则a\equiv b(mod~m)\\
如果(c,m)=1,ac≡bc(mod m)则a≡b(mod m)
证明:
∵
a
c
≡
b
c
(
m
o
d
m
)
∴
a
c
−
b
c
≡
0
(
m
o
d
m
)
∴
(
a
−
b
)
c
≡
0
(
m
o
d
m
)
∵
(
c
,
m
)
=
1
∴
c
在
模
m
下
存
在
逆
元
c
−
1
∴
(
a
−
b
)
c
c
−
1
=
0
(
m
o
d
m
)
∴
a
−
b
≡
0
(
m
o
d
m
)
∴
a
≡
b
(
m
o
d
m
)
\because ac\equiv bc(mod~m)\\ \therefore ac-bc\equiv0(mod~m)\\ \therefore(a-b)c\equiv0(mod~m)\\ \because (c,m)=1\\ \therefore c在模m下存在逆元c^{-1}\\ \therefore (a-b)cc^{-1}=0(mod~m)\\ \therefore a-b\equiv0(mod~m)\\ \therefore a\equiv b(mod~m)\\
∵ac≡bc(mod m)∴ac−bc≡0(mod m)∴(a−b)c≡0(mod m)∵(c,m)=1∴c在模m下存在逆元c−1∴(a−b)cc−1=0(mod m)∴a−b≡0(mod m)∴a≡b(mod m)
再来第二个引理:
给
定
一
个
数
m
,
和
对
应
的
一
个
完
全
剩
余
系
{
a
1
,
a
2
,
a
3
.
.
.
,
a
m
−
1
}
∀
(
c
,
m
)
=
1
,
{
a
1
c
,
a
2
c
,
a
3
c
,
a
p
−
1
c
}
在
模
m
下
也
是
一
个
完
全
剩
余
系
给定一个数m,和对应的一个完全剩余系\{a_1,a_2,a_3...,a_{m-1}\}\\ \forall(c,m)=1,\{a_1c,a_2c,a_3c,a_{p-1}c\}在模m下也是一个完全剩余系\\
给定一个数m,和对应的一个完全剩余系{a1,a2,a3...,am−1}∀(c,m)=1,{a1c,a2c,a3c,ap−1c}在模m下也是一个完全剩余系
证明:
假
设
在
{
a
1
c
,
a
2
c
,
a
3
c
,
a
p
−
1
c
}
中
,
∃
a
i
c
≡
a
j
c
(
m
o
d
m
)
(
i
≠
j
)
则
根
据
引
理
1
,
可
知
a
i
≡
a
j
(
m
o
d
m
)
与
条
件
中
的
a
i
,
a
j
是
属
于
一
个
完
全
剩
余
系
下
矛
盾
,
所
以
假
设
不
成
立
得
证
:
{
a
1
c
,
a
2
c
,
a
3
c
,
a
p
−
1
c
}
的
每
一
个
值
在
模
m
下
都
不
相
等
根
据
抽
屉
原
理
可
知
{
a
1
c
,
a
2
c
,
a
3
c
,
a
p
−
1
c
}
也
是
一
个
完
全
剩
余
系
。
假设在\{a_1c,a_2c,a_3c,a_{p-1}c\}中,\exists a_ic\equiv a_jc(mod~m)(i\neq j)\\ 则根据引理1,可知a_i\equiv a_j(mod~m)\\ 与条件中的a_i,a_j是属于一个完全剩余系下矛盾,所以假设不成立\\ 得证:\{a_1c,a_2c,a_3c,a_{p-1}c\}的每一个值在模m下都不相等\\ 根据抽屉原理可知\{a_1c,a_2c,a_3c,a_{p-1}c\}也是一个完全剩余系。
假设在{a1c,a2c,a3c,ap−1c}中,∃aic≡ajc(mod m)(i=j)则根据引理1,可知ai≡aj(mod m)与条件中的ai,aj是属于一个完全剩余系下矛盾,所以假设不成立得证:{a1c,a2c,a3c,ap−1c}的每一个值在模m下都不相等根据抽屉原理可知{a1c,a2c,a3c,ap−1c}也是一个完全剩余系。
接下来就是证明费马小定理了:
对
于
一
个
素
数
p
,
我
们
先
构
造
一
个
模
p
的
完
全
剩
余
系
{
0
,
1
,
2
,
3
,
.
.
.
,
p
−
1
}
。
对
于
∀
a
,
满
足
(
a
,
p
)
=
1
,
则
{
0
,
a
,
2
a
,
3
a
,
.
.
.
,
(
p
−
1
)
a
}
也
是
一
个
完
全
剩
余
系
∴
1
×
2
×
3...
×
(
p
−
1
)
≡
a
×
2
a
×
3
a
.
.
.
×
(
p
−
1
)
a
(
m
o
d
p
)
(
p
−
1
)
!
≡
a
p
−
1
(
p
−
1
)
!
(
m
o
d
p
)
∵
(
(
p
−
1
)
!
,
p
)
=
1
,
引
理
1
∴
a
p
−
1
=
1
(
m
o
d
p
)
对于一个素数p,我们先构造一个模p的完全剩余系\{0, 1,2,3,...,p-1\}。\\ 对于\forall a,满足(a,p)=1,则\{0, a,2a,3a,...,(p-1)a\}也是一个完全剩余系\\ \therefore 1\times2\times3...\times(p-1)\equiv a\times2a\times3a...\times(p-1)a(mod~p)\\ (p-1)!\equiv a^{p-1}(p-1)!(mod~p)\\ \because ((p-1)!,p)=1, 引理1\\ \therefore a^{p-1}=1(mod~p)\\
对于一个素数p,我们先构造一个模p的完全剩余系{0,1,2,3,...,p−1}。对于∀a,满足(a,p)=1,则{0,a,2a,3a,...,(p−1)a}也是一个完全剩余系∴1×2×3...×(p−1)≡a×2a×3a...×(p−1)a(mod p)(p−1)!≡ap−1(p−1)!(mod p)∵((p−1)!,p)=1,引理1∴ap−1=1(mod p)