1. 介绍
-
什么是全文检索和Lucene?
基于java环境,基于Lucene之上包装一层外壳 Lucene是一个java的搜索引擎库,操作非常繁琐
-
应用场景
1.搜索: 电商,百科 2.高亮显示: github 3.分析和数据挖掘: ELk
2. 安装部署
1.下载软件
mkdir /data/soft
上传
elasticsearch-6.6.0.rpm
jdk-8u102-linux-x64.rpm
2.安装jdk
rpm -ivh jdk-8u102-linux-x64.rpm
java -version
3.安装ES
rpm -ivh elasticsearch-6.6.0.rpm
4.启动
systemctl daemon-reload
systemctl enable elasticsearch.service
systemctl start elasticsearch.service
5. 检查
netstat -lntup|grep 9200
curl 127.0.0.1:9200
3. 配置以及内存锁定
1.查看ES有哪些配置
[root@db01 ~]# rpm -qc elasticsearch
/etc/elasticsearch/elasticsearch.yml #主配置文件
/etc/elasticsearch/jvm.options #JVM虚拟机配置
/etc/init.d/elasticsearch #init启动文件
/etc/sysconfig/elasticsearch #环境变量相关配置
/usr/lib/sysctl.d/elasticsearch.conf #环境变量相关配置
/usr/lib/systemd/system/elasticsearch.service #systemc启动文件
2.自定义配置文件
[root@db01 ~]# grep "^[a-z]" /etc/elasticsearch/elasticsearch.yml
node.name: node-1
path.data: /var/lib/elasticsearch
path.logs: /var/log/elasticsearch
bootstrap.memory_lock: true
network.host: 10.0.0.51,127.0.0.1
http.port: 9200
3.重启服务后发现报错
systemctl restart elasticsearch
4.解决内存锁定失败:
查看日志发现提示内存锁定失败
tail -f /var/log/elasticsearch/elasticsearch.log
[2019-12-04T10:27:42,136][ERROR][o.e.b.Bootstrap ] [node-1] node validation exception
[1] bootstrap checks failed
[1]: memory locking requested for elasticsearch process but memory is not locked
解决方案:
systemctl edit elasticsearch
[Service]
LimitMEMLOCK=infinity
检查
systemctl daemon-reload
systemctl restart elasticsearch
官方解决方案
https://www.elastic.co/guide/en/elasticsearch/reference/6.6/_memory_lock_check.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.6/setting-system-settings.html#systemd
4. 交互方式
-
三种交互方式
curl命令: 最繁琐 最复杂 最容易出错 不需要安装任何软件,只需要有curl命令 es-head插件: 查看数据方便 操作相对容易 需要node环境 kibana: 查看数据以及报表格式丰富 操作很简单 需要java环境和安装配置kibana
-
es-head插件安装
es-head 三种方式: 1.npm安装方式 - 需要nodejs环境 - 需要连接国外源 2.docker安装 3.google浏览器插件 --> 推荐使用简单方便 - 修改文件名为zip后缀 - 解压目录 - 拓展程序-开发者模式-打开已解压的目录 - 连接地址修改为ES的IP地址 方式一: Head插件在5.0以后安装方式发生了改变,需要nodejs环境支持,或者直接使用别人封装好的docker镜像 插件官方地址 https://github.com/mobz/elasticsearch-head 使用docker部署elasticsearch-head docker pull alivv/elasticsearch-head docker run --name es-head -p 9100:9100 -dit elivv/elasticsearch-head 方式二: 使用nodejs编译安装elasticsearch-head cd /opt/ wget https://nodejs.org/dist/v12.13.0/node-v12.13.0-linux-x64.tar.xz tar xf node-v12.13.0-linux-x64.tar.xz ln -s node-v12.13.0-linux-x64 node echo "export PATH=/opt/node/bin:\$PATH" >> /etc/profile source /etc/profile npm -v node -v npm install -g cnpm --registry=https://registry.npm.taobao.org cd /opt/ git clone git://github.com/mobz/elasticsearch-head.git cd elasticsearch-head/ cnpm install cnpm run start 修改ES配置文件支持跨域 http.cors.enabled: true http.cors.allow-origin: "*" 方式三: 1.安装kibana rpm -ivh kibana-6.6.0-x86_64.rpm 2.配置kibana [root@db01 ~]# egrep "^[a-Z]" /etc/kibana/kibana.yml server.port: 5601 server.host: "10.0.0.51" elasticsearch.hosts: ["http://localhost:9200"] kibana.index: ".kibana" 3.启动kibana systemctl start kibana 4.操作ES Dev Tools 关键词: 1.Lucene 2.java 3.全文检索 4.倒排索引
5. 简单增删改查
##创建索引
PUT index
##插入数据
1.使用自定义的ID
PUT oldzhang/info/1
{
"name": "zhang",
"age": "29"
}
2.使用随机ID
POST oldzhang/info/
{
"name": "zhang",
"age": "29",
"pet": "xiaoqi"
}
##查询数据
1.简单查询
GET /oldzhang/_search
GET /oldzhang/_search/1
2.单个条件查询
GET /oldzhang/_search
{
"query" : {
"term" : { "job" : "it" }
}
}
3.多个条件查询
GET /oldzhang/_search
{
"query" : {
"bool": {
"must": [
{"match": {"pet": "xiao10"}},
{"match": {"name": "ya"}}
],
"filter": {
"range": {
"age": {
"gte": 27,
"lte": 30
}
}
}
}
}
}
}
4.查询方式
- curl命令
- es-head 基础查询多个条件
- es-head 左侧字段查询
- kibana dev-tools 命令查询
- kibana 索引查询
##更新数据
GET oldzhang/info/1
PUT oldzhang/info/1
{
"name": "zhang",
"age": "30",
"job": "it"
}
POST oldzhang/info/1
{
"name": "zhang",
"age": "30",
"job": "it"
}
##删除数据
1.删除指定ID的数据
DELETE oldzhang/info/1
2.删除符合条件的数据
POST oldzhang/_delete_by_query
{
"query" : {
"match":{
"age":"29"
}
}
}
3.删除索引
DELETE oldzhang
4.!!!警告!!!
尽量不要在命令行或者Kibana里删除,因为没有任何警告
建议使用es-head删除
生产环境可以先把索引关闭掉,如果一段时间没人访问了再删除
6. 集群相关名词
1.集群健康状态
绿色: 所有数据都完整,并且副本数满足
黄色: 所有数据都完整,但是有的索引副本数不满足
红色: 有的索引数据不完整
默认创建索引:
5分片
1副本
2.节点类型
主节点: 负责调度数据分配到哪个节点
数据节点: 负责处理落到自己身上的请求
默认: 主节点同时也是数据节点
3.数据分片
主分片: 实际存储的数据,负责读写,粗框的是主分片
副本分片: 主分片的副本,提供读,同步主分片,细框的是副本分片
4.副本:
主分片的备份,副本数量可以自定义
5.修改分片和副本的限定条件
- 索引创建的时候可以指定分片数和副本数
- 索引一旦创建成功,分片数就不能修改了,但是可以调整副本数
7. 集群部署
0.从db01拉取数据
mkdir /data/soft
cd /data/soft
rsync -avz 10.0.0.51:/data/soft/* .
1.安装java
rpm -ivh jdk-8u102-linux-x64.rpm
2.安装ES
rpm -ivh elasticsearch-6.6.0.rpm
3.配置ES配置文件
配置内存锁定:
systemctl edit elasticsearch.service
[Service]
LimitMEMLOCK=infinity
systemctl daemon-reload
集群配置文件:
b01配置文件:
cat >/etc/elasticsearch/elasticsearch.yml <<EOF
cluster.name: linuxNB
node.name: node-1
path.data: /var/lib/elasticsearch
path.logs: /var/log/elasticsearch
bootstrap.memory_lock: true
network.host: 10.0.0.51,127.0.0.1
http.port: 9200
discovery.zen.ping.unicast.hosts: ["10.0.0.51", "10.0.0.52"]
discovery.zen.minimum_master_nodes: 1
EOF
==================================================================
db02配置文件:
cat >/etc/elasticsearch/elasticsearch.yml <<EOF
cluster.name: linuxNB
node.name: node-2
path.data: /var/lib/elasticsearch
path.logs: /var/log/elasticsearch
bootstrap.memory_lock: true
network.host: 10.0.0.52,127.0.0.1
http.port: 9200
discovery.zen.ping.unicast.hosts: ["10.0.0.51", "10.0.0.52"]
discovery.zen.minimum_master_nodes: 1
EOF
4.2台机器都重新启动es
systemctl restart elasticsearch.service
5.查看日志
tail -f /var/log/elasticsearch/linuxNB.log
8. 集群相关问题
-
节点说明:
1.插入和读取数据在任意节点都可以执行,效果一样 2.es-head可以连接集群内任一台服务 3.主节点负责读写 如果主分片所在的节点坏掉了,副本分片会升为主分片 4.主节点负责调度 如果主节点坏掉了,数据节点会自动升为主节点
-
查看集群各种信息:
GET _cat/nodes 当前集群的拓扑结构 GET _cat/health 集群健康状态 GET _cat/master 主节点信息 GET _cat/fielddata 集群中每个节点中fileddata所使用的堆内存 GET _cat/indices 索引信息 GET _cat/shards 分片信息 GET _cat/shards/oldzhang 指定查看索引分片信息
-
集群注意事项:
注意1:发现节点参数不需要把集群内所有的机器IP都加上 只需要包含集群内任意一个IP和自己的IP就可以 discovery.zen.ping.unicast.hosts: ["10.0.0.51","10.0.0.53"] 注意2: 集群选举相关的参数需要设置为集群节点数的大多数 discovery.zen.minimum_master_nodes: 2 注意3: 默认创建索引为1副本5分片 注意4: 数据分配的时候会出现2中颜色 紫色: 正在迁移 黄色: 正在复制 绿色: 正常 注意5: 3节点的时候 0副本一台都不能坏 1副本的极限情况下可以坏2台: 1台1台的坏,不能同时坏2台 2副本的情况可以同时坏2台
-
自定义副本分片和索引
索引为2副本3分片 索引为0副本5分片 注意: 索引一旦建立完成,分片数就不可以修改了 但是副本数可以随时修改 命令: 1.创建索引的时候就自定义副本和分片 PUT /yaya/ { "settings": { "number_of_shards": 3, "number_of_replicas": 0 } } 2.修改单个索引的副本数 PUT /yaya/_settings/ { "settings": { "number_of_replicas": 0 } } 3.修改所有的索引的副本数 PUT /_all/_settings/ { "settings": { "number_of_replicas": 0 } } 工作如何设置: 2个节点: 默认就可以 3个节点: 重要的数据,2副本 不重要的默认 日志收集: 1副本3分片
-
监控:
监控注意,不能只监控集群状态 1.监控节点数 2.监控集群状态 3.2者任意一个发生改变了都报警 监控命令: curl -s 10.0.0.52:9200/_cat/nodes curl -s 10.0.0.52:9200/_cat/health
-
增强插件x-pack监控功能
monitoring-->点一下蓝色图标
-
优化:
1.内存 不要超过32G 加SSD固态硬盘
9. 备份恢复
前提条件: 必须要有Node环境和npm软件
1.nodejs环境安装
https://nodejs.org/dist/v10.16.3/node-v10.16.3-linux-x64.tar.xz
tar xf node-v10.16.3-linux-x64.tar.xz -C /opt/node
vim /etc/profile
export PATH=/opt/node/bin:$PATH
source /etc/profile
node -v
npm -v
2.指定使用国内淘宝npm源
npm install -g cnpm --registry=https://registry.npm.taobao.org
3.安装es-dump
cnpm install elasticdump -g
4.备份命令
elasticdump \
--input=http://10.0.0.51:9200/oldzhang \
--output=/data/oldzhang.json \
--type=data
压缩备份
elasticdump \
--input=http://10.0.0.51:9200/oldzhang \
--output=$|gzip > /data/oldzhang.json.gz
5.恢复命令
elasticdump \
--input=/data/oldzhang.json \
--output=http://10.0.0.51:9200/oldzhang
6.注意
恢复的时候需要先解压缩成json格式
恢复的时候,如果已经存在相同的数据,会被覆盖掉
如果新增加的数据,则不影响,继续保留
10. 中文分词
分词配置
注意!如果是ES集群,所有的节点都要安装,所有的节点安装完毕之后都要重启
1.配置中文分词器
cd /usr/share/elasticsearch
./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.6.0/elasticsearch-analysis-ik-6.6.0.zip
2.重启所有ES节点
systemctl restart elasticsearch
3.创建索引
PUT /news
4.创建模板
POST /news/text/_mapping
{
"properties": {
"content": {
"type": "text",
"analyzer": "ik_max_word",
"search_analyzer": "ik_smart"
}
}
}
5.插入测试数据
POST /news/text/1
{"content":"美国留给伊拉克的是个烂摊子吗"}
POST /news/text/2
{"content":"公安部:各地校车将享最高路权"}
POST /news/text/3
{"content":"中韩渔警冲突调查:韩警平均每天扣1艘中国渔船"}
POST /news/text/4
{"content":"中国驻洛杉矶领事馆遭亚裔男子枪击 嫌犯已自首"}
6.再次查询数据发现已经能识别中文了
POST /news/_search
{
"query" : { "match" : { "content" : "中国" }},
"highlight" : {
"pre_tags" : ["<tag1>", "<tag2>"],
"post_tags" : ["</tag1>", "</tag2>"],
"fields" : {
"content" : {}
}
}
}
####热更新词典
所有ES节点都操作
https://github.com/medcl/elasticsearch-analysis-ik
1.安装nginx
2.配置分词器配置文件,增加远程地址
3.重启所有的ES节点
4.重新更新数据让分词生效