【item() detach()用法】神经网络训练显存越来越大的原因之一

1 显存变大的原因

PyTorch采用动态图机制,通过tensor(以前是variable)来构建图,tensor里面包含的梯度信息用于反向传播求导。但不是所有变量都应该包含梯度(毕竟东西多,占“面积”就多),否则就会造成网络越跑,所占显存越大的情况,那怎么办呢?

2 loss.item()和loss.detach()解决问题

先看一段代码,

    for batch_idx, (inputs, targets) in enumerate(trainloader):
        inputs, targets = inputs.to(device), targets.to(device)
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = loss_func(outputs, targets)
        loss.backward()
        optimizer.step()
        
        print('loss:',loss)
        print('loss.item():',loss.item())
        print('loss.detach():',loss.detach())
        train_loss += loss.item()			# <----关键
        ...

输出:

loss: tensor(2.3391, device='cuda:0', grad_fn=<NllLossBackward>)
loss.item(): 2.3391051292419434
loss.detach(): tensor(2.3391, device='cuda:0')

很明显,loss.backward()在上面已经进行过了,下面去计算train_loss的时候就不要再带有梯度信息才合适。故有两种解决方案:

  • 使用loss.detach()来获取不需要梯度回传的部分。
    detach()通过重新声明一个变量,指向原变量的存放位置,但是requires_grad变为False。
  • 使用loss.item()直接获得对应的python数据类型。
    建议: 把除了loss.backward()之外的loss调用都改成loss.item()

3 感谢链接

https://www.zhihu.com/question/67209417/answer/344752405
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值