【shell】脚本实现将开发机user1账户下的abc文件夹复制到user2~4账户下 1 主要内容可以使用Shell脚本来实现将开发机(Linux)上user1账户下的abc文件夹复制到user2、user3和user4账户下。#!/bin/bash# 数组赋值,目标用户列表# target_users=(user2 user3 user4)# 定义数组target_users=()# 生成user+数字的数组,例如,生成user1到user5for ((i = 2; i <= 4; i++)); do target_users+=("user${i}")
【grep】从html表格中快速定位某个数据 在html中是一堆表格、图片、文字什么的,想从表格中提取关键词为“GJC”后对应的数字,怎么办呢?如果输出内容比较多,可以将终端中输出的所有内容复制粘贴到excel中,善用数据-分列/排序功能。逐个打开html文件,“ctrl+F”搜一下,然后复制粘贴?数量少可以的,数量多就不ok了。从文件 file 中搜索有 panda 字样的行,并同时显示该行的后 1 行。输出:当前所有文件夹下的所有html文件中,GJC所在行 及后面3行。分列中分隔符号-空格(连续分隔符号视为单个处理)
【带宽、主频、位宽、数据传输速率】DDR带宽怎么计算? 两者之间的关系是DDR data rate = DDR主频 * 传输位数,例如DDR4-3200内存的DDR data rate为3200Mbps,而DDR主频为1600MHz。在DDR内存中,数据传输是在时钟周期的上升沿和下降沿都进行一次采样,因此DDR data rate是DDR主频的两倍。需要注意的是,这里的理论带宽是指DDR内存的最大传输速率,实际带宽会受到多种因素的影响,例如内存控制器、内存时序等。这里的Mbit/s指的是兆比特每秒,MB/s指的是兆字节每秒,GB/s指的是千兆字节每秒。
【IP固定】地平线开发板如何实现重启IP地址不变 重新刷了地平线工具链OE包中BSP20230417的系统镜像,结果只能串口连接,无法实现网口连接,串口连接后,发现eth0和eth1的IP竟然是一样的,如下图所示。然后就可以通过网口连接了,当然要保证PC端IP与板端IP在同一网段。直接在串口终端将eth0关掉即可。
【gridsample】地平线如何支持gridsample算子 在图像处理领域,grid_sample 是一个常用的操作,通常用于对图像进行仿射变换或透视变换。它可以在给定输入图像和一个变换矩阵的情况下,对输入图像进行采样,生成一个新的输出图像。input:输入特征图,可以是四维或者五维张量,本文主要以四维为例进行介绍,表示为 (N,C,Hin,Win)。
【配置公钥到开发板】CRITICAL can not establish ssh connection to bpu board. authentication failed! 然后使用 ssh-copy-id root@10.64.61.203 配置公钥到开发板,IP请填写自己的;在当前环境中,先使用 ssh-keygen 生成ssh-key,过程中。说明正在使用hb_verifier工具,无法连接有密码的开发板。此时就可以使用 hb_verifier 工具验证一致性。使用地平线hb_verifier工具时,出现如下。
【C++】动/静态库扩展名以及优缺点 扩展名为(.a或.lib,.a是linux侧,.lib是windows侧),静态库在编译时,会直接整合到目标程序中,编译出来的文件会比较大。:编译出的可执行文件 可以独立运行,不再需要向外部要求读取函数库的内容。:从升级难易度来看没有优势,如果函数库更新,需要重新编译。
【图像基础知识】常见图像格式 随着人工智能的发展,深度神经网络在视觉领域“百花齐放”,为了满足不同场景的需求,我们会接触到多种图像数据格式,本文将为大家详细地介绍深度学习场景中常用的图像数据格式:RGB、BGR、YUV(YUV444、NV12)、Gray。
【linux命令】如何查看文件/文件夹所占空间大小 ncdu 是一款交互式的命令行工具,可以显示目录结构和文件大小,并以可视化的方式呈现。使用 ncdu 命令可以轻松查看文件夹所占空间大小。使用 du 命令可以显示文件或目录的磁盘使用情况。你可以使用 -h 选项以人类可读的方式显示大小,或使用 -s 选项仅显示总大小。在上面的输出中,每行表示一个子目录或文件,以及它的大小。在上面的输出中,-h 选项以人类可读的方式显示文件夹大小,-s 选项仅显示总大小。在上面的输出中,第一列是文件的权限和类型,第五列是文件大小。在上面的输出中,第二行是文件大小。
【PaddlePaddle onnx】PaddlePaddle导出ONNX及模型可视化教程 使用深度学习开源框架Pytorch训练完网络模型后,在部署之前通常需要进行格式转换,地平线工具链模型转换目前支持Caffe1.0和ONNX(opset_version=10/11 且 ir_version≤7)两种。ONNX(Open Neural Network Exchange)格式是一种常用的开源神经网络格式,被较多推理引擎支持,例如Pytorch、PaddlePaddle、TensorFlow等。本文将详细介绍如何将PaddlePaddle格式的模型导出到ONNX格式。
【tensorflow onnx】TensorFlow2导出ONNX及模型可视化教程 使用深度学习开源框架Pytorch训练完网络模型后,在部署之前通常需要进行格式转换,地平线工具链模型转换目前支持Caffe1.0和ONNX(opset_version=10/11 且 ir_version≤7)两种。ONNX(Open Neural Network Exchange)格式是一种常用的开源神经网络格式,被较多推理引擎支持,例如Pytorch、PaddlePaddle、TensorFlow等。本文将详细介绍如何将TensorFlow2得到的模型导出为ONNX格式。
【pytorch onnx】Pytorch导出ONNX及模型可视化教程 使用深度学习开源框架Pytorch训练完网络模型后,在部署之前通常需要进行格式转换,例如地平线工具链模型转换目前仅支持Caffe1.0和ONNX(opset_version=10/11 且 ir_version≤7)两种。ONNX(Open Neural Network Exchange)格式是一种常用的开源神经网络格式,被较多推理引擎支持,例如Pytorch、PaddlePaddle、TensorFlow等。本文将详细介绍如何将Pytorch格式的模型导出到ONNX格式的模型。