脚本各个类别介绍

脚本是一种计算机程序,通常用于自动化任务、批量处理数据或者简化常见操作等。常见的脚本类型包括:

这些脚本类型都有各自的特点和用途,选择合适的脚本类型可以更有效地完成所需的任务。

  1. Shell 脚本:是在 Unix、Linux 等操作系统下运行的脚本。Shell 脚本通常使用 Bash、Zsh、Ksh 等 Shell 语言编写,用于执行系统命令、配置环境变量等任务。

  2. Python 脚本:是使用 Python 语言编写的脚本程序。Python 脚本可以用于数据处理、网络爬虫、自动化测试等多种任务。

  3. JavaScript 脚本:是在网页浏览器中运行的脚本程序。JavaScript 脚本可以用于实现动态网页效果、表单验证、用户交互等任务。

  4. Perl 脚本:是使用 Perl 语言编写的脚本程序。Perl 脚本可以用于文本处理、系统管理等任务。

  5. Ruby 脚本:是使用 Ruby 语言编写的脚本程序。Ruby 脚本可以用于 Web 开发、系统管理等任务。

  6. PowerShell 脚本:是在 Windows 操作系统中运行的脚本程序。PowerShell 脚本可以用于管理 Windows 系统、配置系统参数等任务。

  7. Batch 脚本:是在 Windows 操作系统中运行的脚本程序。Batch 脚本通常使用扩展名为 .bat 的文件,用交互等任务。

  8. Perl 脚本:是使用 Perl 语言编写的脚本程序。Perl 脚本可以用于文本处理、系统管理等任务。

  9. Ruby 脚本:是使用 Ruby 语言编写的脚本程序。Ruby 脚本可以用于 Web 开发、系统管理等任务。

  10. PowerShell 脚本:是在 Windows 操作系统中运行的脚本程序。PowerShell 脚本可以用于管理 Windows 系统、配置系统参数等任务。

  11. Batch 脚本:是在 Windows 操作系统中运行的脚本程序。Batch 脚本通常使用扩展名为 .bat 的文件,用于执行一系列 Windows 命令、批量处理文件等任务。

  12. Lua 脚本:是使用 Lua 语言编写的脚本程序。Lua 脚本可以用于游戏开发、嵌入式系统等任务。

  13. AWK 脚本:是在 Unix、Linux 等操作系统下运行的脚本程序。AWK 脚本通常用于文本处理、数据分析等任务。

### 查看 COCO 数据集中每个类别的示例图像 为了查看 COCO 数据集中每个类别的示例图像,可以采用 Python 编程方法来实现这一需求。此过程涉及加载数据集、解析 JSON 文件中的元数据并提取特定类别的图像。 #### 加载必要的库和工具 首先需要安装 `pycocotools` 库以及其他辅助库如 `matplotlib` 来可视化图像: ```bash pip install pycocotools matplotlib requests ``` 接着,在 Python 脚本中导入所需的模块,并设置路径指向本地保存的 COCO 数据集位置: ```python from pycocotools.coco import COCO import numpy as np import skimage.io as io import matplotlib.pyplot as plt import random ``` #### 初始化 COCO API 并获取类别信息 通过指定训练或测试集合对应的标注文件路径初始化 COCO 类实例,之后可以通过调用相应的方法获得所有分类的信息: ```python dataDir = './path_to_coco_dataset' dataType = 'val2017' # 或者 train2017 等其他子集名称 annFile = f'{dataDir}/annotations/instances_{dataType}.json' # 初始化 COCO api 对象用于 val2017 子集 coco = COCO(annFile) # 获取所有的类别 ID 列表 catIds = coco.getCatIds() cats = coco.loadCats(catIds) print(f"COCO 中共有 {len(cats)} 种不同类型的物体.") for cat in cats[:5]: print(f"{cat['id']}: {cat['name']}") # 打印前五种类别作为例子[^4] ``` #### 展示特定类别的随机样本图像 对于想要展示的具体类别,可以根据其名字找到对应 ID,进而查询属于该类别的图片 ID 集合;最后从中选取若干张进行显示: ```python def display_random_images_of_category(category_name, num_samples=3): """给定类别名,返回几张来自此类别的随机样例""" # 根据类别名称查找ID catId = coco.getCatIds(catNms=[category_name])[0] # 得到含有这个类标的img id list imgIds = coco.getImgIds(catIds=[catId]) fig, axs = plt.subplots(1, min(num_samples, len(imgIds)), figsize=(18, 6)) selected_img_ids = random.sample(imgIds, k=min(num_samples, len(imgIds))) for idx, img_id in enumerate(selected_img_ids): img_info = coco.loadImgs([img_id])[0] I = io.imread(f"{dataDir}/{dataType}/{img_info['file_name']}") axs[idx].imshow(I); axs[idx].axis('off') display_random_images_of_category("dog", num_samples=3) # 更改 "dog" 为任意感兴趣的对象类别 ``` 上述代码片段展示了如何从 COCO 数据集中抽取某个具体类别的多幅代表性图像。用户只需修改函数参数即可轻松切换至不同的对象类型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值