洛谷 P4310 绝世好题

该博客介绍了如何利用位运算高效解决寻找一个整数数组中满足特定条件的最大连续子序列和的问题。通过分析题目条件,提出利用位运算的独立性,对每个二进制位分别进行统计,从而加速求解过程。代码示例展示了如何用C++实现这一方法,涉及位运算、动态规划等概念。
摘要由CSDN通过智能技术生成

Description

在这里插入图片描述

思路

由题目条件 b i & b i − 1 ≠ 0 b_i \&b_{i-1} \neq 0 bi&bi1=0,可以得到:只要两个数的二进制展开中,在任意一位相同的二进制位上,两个数都为1,那么与运算之后结果就一定不为0。

考虑到 n ≤ 100000 n\leq100000 n100000,无法使用类似常规的最长不降子序列的做法,我们可以利用位运算的特点——不同二进制位之间的位运算相互独立,来将各个二进制位分开进行统计以此加快效率,这也是位运算题目中经常使用的技巧。

例如本题中,设 f i , j f_{i,j} fi,j表示,当前正在处理的数应该往前连接上的那个数,在其第 j j j位为1的情况下,前 i i i个数所能达到的最大长度。

那么就只需将当前数(为第 i i i个数,代码中为 k k k)中为1的每个二进制位所对应的 f i − 1 , j f_{i-1,j} fi1,j加1后进行比较,取其中的最大值,最后赋值回去到所有 f i , j f_{i,j} fi,j中即可(因为如果k的第 j j j位为1,能与之前的数连接上,那么就相当于 k k k的所有为1的位都连接上了。所以只需要取其中的最大值)。

代码

#include<cstdio>
#include<iostream>
#include<cmath>
using namespace std;
const int N=1e5;
int n,ans,f[N+1][32];
int main()
{
	scanf("%d",&n);
	for(int i=1,k;i<=n;i++)
	{
		int len=0;
		scanf("%d",&k);
		for(int j=0;j<32;j++)
		if(k&(1<<j)) len=max(len,f[i-1][j]+1);
		for(int j=0;j<32;j++)
		if(k&(1<<j)) f[i][j]=len;
		else f[i][j]=f[i-1][j];
	}
	for(int i=0;i<32;i++)
	ans=max(f[n][i],ans);
	printf("%d",ans);
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值