比较99^100与100^99大小

比较99100与10099大小

问题点

9 9 100 是 100 个 99 的 积 ; 99^{100} 是100个99的积; 9910010099
10 0 99 是 99 个 100 的 积 ; 100^{99}是99个100的积; 1009999100
对 于 平 面 加 法 来 说 , 和 均 为 9900 ; 对于平面加法来说,和均为9900; 9900
所 以 这 是 个 x y 与 y x 的 大 小 且 x y 问 题 ; 所以这是个x^y与y^x的大小且xy问题; xyyxxy;

整数拆分类推:

12 = 1 + 1 + . . . . + 1 − − > 1 12 = 1 ; 12 = 1 + 1 + .... + 1 --> 1^{12}=1; 12=1+1+....+1>112=1;
12 = 2 + 2 + . . . + 2 − − > 2 6 = 64 ; 12 = 2 + 2 + ... + 2 --> 2^6 = 64; 12=2+2+...+2>26=64;
12 = 3 + . . . + 3 − − > 3 4 = 81 ; 12 = 3 + ... + 3 --> 3^4 = 81; 12=3+...+3>34=81;
12 = 4 + . . + 4 − − > 4 3 = 64 ; 12 = 4 + .. + 4 --> 4^3 = 64; 12=4+..+4>43=64;
12 = 5 + 5 + 2 − − > = 50 ; 12 = 5 + 5 + 2 --> =50; 12=5+5+2>=50;

结论:1) 尽量拆3; 2) 拆2,4不拆1; 3) 比3大得越多,积越小;

证明:

N = X + X + X + . . . . . . . . + X ( n = N X ) N = X + X + X + ........ + X (n=\dfrac{N}{X}) N=X+X+X+........+X(n=XN)
f ( x ) = x n = x N X ① f(x) = x^n = x^\dfrac{N}{X} ① f(x)=xn=xXN

  1. 求f(x)的最大值:
    两边求对数: l n f ( x ) = l n x N X = N l n x X lnf(x) = lnx^\dfrac{N}{X} = N\dfrac{lnx} { X} lnf(x)=lnxXN=NXlnx
    求lnf(x)最大值,求导:
    [ l n f ( x ) ] ′ = N ( ( 1 − l n x ) x 2 ) [lnf(x)]' = N(\dfrac{(1-lnx) } {x^2}) [lnf(x)]=N(x2(1lnx))
  2. 当x = e为lnf(x)的最大值,即f(x)的最大值: e N e e^\dfrac{N}{e} eeN
  3. 所以x离e最近的数越大: 9 9 100 > 10 0 99 99^{100} > 100^{99} 99100>10099

进制应用

这个e的证明为二进制的发展奠定了一部分理论基础;
假设你有一定个数的信息表示(比如:指令集个数或地址线个数为100):
那么在总数有限的范围下,如果用这些总线数量来寻址表示更大的范围呢?这就是进制的一种应用;

这里以上述类推的12地址线总数计算为例:

  • 如果用4进制可以描述为(4+4+4):每个段有4个通路,共3段;
  • 如果用3进制可以描述为(3+3+3+3):每个段有3个通路,共4段;
  • 如果用2进制可以描述为(2+2+2+2+2+2):每个段有2个通路,共6段;
    在不考虑实现方案难易程度下,4,3,2进制换成10进制所能表达的范围分别是:64,81,64;
    则说明同一堆有限量,采用3为最优解能排列描述更多的信息;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

来杯清咖_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值