比较99100与10099大小
问题点
9
9
100
是
100
个
99
的
积
;
99^{100} 是100个99的积;
99100是100个99的积;
10
0
99
是
99
个
100
的
积
;
100^{99}是99个100的积;
10099是99个100的积;
对
于
平
面
加
法
来
说
,
和
均
为
9900
;
对于平面加法来说,和均为9900;
对于平面加法来说,和均为9900;
所
以
这
是
个
x
y
与
y
x
的
大
小
且
x
y
问
题
;
所以这是个x^y与y^x的大小且xy问题;
所以这是个xy与yx的大小且xy问题;
整数拆分类推:
12
=
1
+
1
+
.
.
.
.
+
1
−
−
>
1
12
=
1
;
12 = 1 + 1 + .... + 1 --> 1^{12}=1;
12=1+1+....+1−−>112=1;
12
=
2
+
2
+
.
.
.
+
2
−
−
>
2
6
=
64
;
12 = 2 + 2 + ... + 2 --> 2^6 = 64;
12=2+2+...+2−−>26=64;
12
=
3
+
.
.
.
+
3
−
−
>
3
4
=
81
;
12 = 3 + ... + 3 --> 3^4 = 81;
12=3+...+3−−>34=81;
12
=
4
+
.
.
+
4
−
−
>
4
3
=
64
;
12 = 4 + .. + 4 --> 4^3 = 64;
12=4+..+4−−>43=64;
12
=
5
+
5
+
2
−
−
>
=
50
;
12 = 5 + 5 + 2 --> =50;
12=5+5+2−−>=50;
结论:1) 尽量拆3; 2) 拆2,4不拆1; 3) 比3大得越多,积越小;
证明:
N
=
X
+
X
+
X
+
.
.
.
.
.
.
.
.
+
X
(
n
=
N
X
)
N = X + X + X + ........ + X (n=\dfrac{N}{X})
N=X+X+X+........+X(n=XN)
f
(
x
)
=
x
n
=
x
N
X
①
f(x) = x^n = x^\dfrac{N}{X} ①
f(x)=xn=xXN①
- 求f(x)的最大值:
两边求对数: l n f ( x ) = l n x N X = N l n x X lnf(x) = lnx^\dfrac{N}{X} = N\dfrac{lnx} { X} lnf(x)=lnxXN=NXlnx
求lnf(x)最大值,求导:
[ l n f ( x ) ] ′ = N ( ( 1 − l n x ) x 2 ) [lnf(x)]' = N(\dfrac{(1-lnx) } {x^2}) [lnf(x)]′=N(x2(1−lnx)) - 当x = e为lnf(x)的最大值,即f(x)的最大值: e N e e^\dfrac{N}{e} eeN
- 所以x离e最近的数越大: 9 9 100 > 10 0 99 99^{100} > 100^{99} 99100>10099
进制应用
这个e的证明为二进制的发展奠定了一部分理论基础;
假设你有一定个数的信息表示(比如:指令集个数或地址线个数为100):
那么在总数有限的范围下,如果用这些总线数量来寻址表示更大的范围呢?这就是进制的一种应用;
这里以上述类推的12地址线总数计算为例:
- 如果用4进制可以描述为(4+4+4):每个段有4个通路,共3段;
- 如果用3进制可以描述为(3+3+3+3):每个段有3个通路,共4段;
- 如果用2进制可以描述为(2+2+2+2+2+2):每个段有2个通路,共6段;
在不考虑实现方案难易程度下,4,3,2进制换成10进制所能表达的范围分别是:64,81,64;
则说明同一堆有限量,采用3为最优解能排列描述更多的信息;