99的100次方和100的99次方哪个大?

99的 100次方 和 100的 99次方 哪个大 ?


用计算器,当然很简单了:

99¹⁰⁰ ≈ 3.6603234127322950493061602657252×10¹⁹⁹
100⁹⁹ = 10¹⁹⁸
99¹⁰⁰ > 100⁹⁹

我们要用数学方法避开 99的幂运算。

用到一个变换公式:

n²-2n+1 > n²-2n
(n-1)(n-1) > n(n-2)
所以,(n-1) / n > (n-2) / (n-1)
即: 99/100 > 98/99 > 97/98 > … > 4/5 > 3/4 > 2/3

接着用除法来比较:

99¹⁰⁰ / 100⁹⁹
= 99 × (99/100) × (99⁹⁸/100⁹⁸)
= (99×99/100) × (99/100)⁹⁸
> (99×99/100) × ( 99/100 × 98/99 × 97/98 × 96/97 × … × 5/6 × 4/5 × 3/4 × 2/3 )
= (99×99/100) × (2/100)
= (99/100) × (99/50)
> (98/99) × (99/50)
= 98/50
> 1


结论:

99¹⁰⁰ > 100⁹⁹
99 的 100次方 大于 100的 99次方


在这里插入图片描述

Prim算法Kruskal算法都是求解图的最小生成树问题的经典算法,它们的思想实现方法不同,下面是它们的实验小结。 1. Prim算法 Prim算法是一种贪心算法,它从图的某个点开始,逐步扩展生成树,直到生成整个图的最小生成树算法步骤如下: 1.1 选取任意一个点作为起始点,将该点加入生成树中。 1.2 找到与当前生成树相连的边中,权重最小的边,将其连接的点加入生成树中。 1.3 重复步骤1.2,直到生成整个图的最小生成树Prim算法的时间复杂度为O(E log V),其中 E 表示边的数量,V 表示点的数量。Prim算法的优点是实现简单,适用于稠密图;缺点是不适用于稀疏图。 2. Kruskal算法 Kruskal算法也是一种贪心算法,它从图的所有边开始,逐步扩展生成树,直到生成整个图的最小生成树算法步骤如下: 2.1 将图中所有边按照权重从小到大排序。 2.2 依次选择每条边,判断该边的两个端点是否在同一连通块中,如果不在,则将它们合并,并将该边加入生成树中。 2.3 重复步骤2.2,直到生成整个图的最小生成树Kruskal算法的时间复杂度为O(E log E),其中 E 表示边的数量。Kruskal算法的优点是适用于稀疏图;缺点是实现相对复杂。 综上所述,Prim算法Kruskal算法都是求解图的最小生成树问题的有效算法,选择哪种算法主要取决于图的性质算法实现的难易程度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值