2020-12-28 出栈序列的合法性

给定一个最大容量为 M 的堆栈,将 N 个数字按 1, 2, 3, …, N 的顺序入栈,允许按任何顺序出栈,则哪些数字序列是不可能得到的?例如给定 M=5、N=7,则我们有可能得到{ 1, 2, 3, 4, 5, 6, 7 },但不可能得到{ 3, 2, 1, 7, 5, 6, 4 }。

输入格式:

输入第一行给出 3 个不超过 1000 的正整数:M(堆栈最大容量)、N(入栈元素个数)、K(待检查的出栈序列个数)。最后 K 行,每行给出 N 个数字的出栈序列。所有同行数字以空格间隔。

输出格式:

对每一行出栈序列,如果其的确是有可能得到的合法序列,就在一行中输出YES,否则输出NO

输入样例:

5 7 5
1 2 3 4 5 6 7
3 2 1 7 5 6 4
7 6 5 4 3 2 1
5 6 4 3 7 2 1
1 7 6 5 4 3 2

输出样例:

YES
NO
NO
YES
NO

题解

注意审题,看清楚题目输出

#include <bits/stdc++.h>
using namespace std;
ostream &sp(ostream &output);
int main()
{
    std::ios::sync_with_stdio(false);
    int maxSize;
    int n;
    int times;
    cin >> maxSize >> n >> times;
    for (int i = 0; i < times; ++i)
    {
        stack<int> s1;
        deque<int> deq1;
        vector<int> before;
        vector<int> after;
        for (int j = 1; j <= n; ++j)
        {
            int x;
            cin >> x;
            before.push_back(x);
            deq1.push_back(x);
        }
        bool flag = true;
        for (int j = 1; j <= n; ++j)
        {
            s1.push(j);
            if (s1.size() > maxSize)
            {
                flag = false;
                break;
            }
            while (!s1.empty() && !deq1.empty() && s1.top() == deq1.front())
            {
                after.push_back(s1.top());
                s1.pop();
                deq1.pop_front();
            }
        }
        if (flag)
        {
            while (!s1.empty())
            {
                after.push_back(s1.top());
                s1.pop();
            }
            if (before == after)
                cout << "YES" << endl;
            else
                cout << "NO" << endl;
        }
        else
            cout << "NO" << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值