LeetCode-Day82(C++) 695. 岛屿的最大面积

  1. 岛屿的最大面积
    给定一个包含了一些 0 和 1 的非空二维数组 grid 。

一个 岛屿 是由一些相邻的 1 (代表土地) 构成的组合,这里的「相邻」要求两个 1 必须在水平或者竖直方向上相邻。你可以假设 grid 的四个边缘都被 0(代表水)包围着。

找到给定的二维数组中最大的岛屿面积。(如果没有岛屿,则返回面积为 0 。)

示例 1:

[[0,0,1,0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,0,0,1,1,1,0,0,0],
[0,1,1,0,1,0,0,0,0,0,0,0,0],
[0,1,0,0,1,1,0,0,1,0,1,0,0],
[0,1,0,0,1,1,0,0,1,1,1,0,0],
[0,0,0,0,0,0,0,0,0,0,1,0,0],
[0,0,0,0,0,0,0,1,1,1,0,0,0],
[0,0,0,0,0,0,0,1,1,0,0,0,0]]
对于上面这个给定矩阵应返回 6。注意答案不应该是 11 ,因为岛屿只能包含水平或垂直的四个方向的 1 。

示例 2:

[[0,0,0,0,0,0,0,0]]
对于上面这个给定的矩阵, 返回 0。

注意: 给定的矩阵grid 的长度和宽度都不超过 50。

方法一:深度优先搜索
算法

我们想知道网格中每个连通形状的面积,然后取最大值。

如果我们在一个土地上,以 4 个方向探索与之相连的每一个土地(以及与这些土地相连的土地),那么探索过的土地总数将是该连通形状的面积。

为了确保每个土地访问不超过一次,我们每次经过一块土地时,将这块土地的值置为 0。这样我们就不会多次访问同一土地。

class Solution {
    int dfs(vector<vector<int>>& grid, int cur_i, int cur_j) {
        if (cur_i < 0 || cur_j < 0 || cur_i == grid.size() || cur_j == grid[0].size() || grid[cur_i][cur_j] != 1) {
            return 0;
        }
        grid[cur_i][cur_j] = 0;
        int di[4] = {0, 0, 1, -1};
        int dj[4] = {1, -1, 0, 0};
        int ans = 1;
        for (int index = 0; index != 4; ++index) {
            int next_i = cur_i + di[index], next_j = cur_j + dj[index];
            ans += dfs(grid, next_i, next_j);
        }
        return ans;
    }
public:
    int maxAreaOfIsland(vector<vector<int>>& grid) {
        int ans = 0;
        for (int i = 0; i != grid.size(); ++i) {
            for (int j = 0; j != grid[0].size(); ++j) {
                ans = max(ans, dfs(grid, i, j));
            }
        }
        return ans;
    }
};

复杂度分析

时间复杂度:O(R×C)。其中 R 是给定网格中的行数,C 是列数。我们访问每个网格最多一次。

空间复杂度:O(R×C),递归的深度最大可能是整个网格的大小,因此最大可能使用 O(R×C) 的栈空间。

方法二:深度优先搜索 + 栈
算法

我们可以用栈来实现深度优先搜索算法。这种方法本质与方法一相同,唯一的区别是:

方法一通过函数的调用来表示接下来想要遍历哪些土地,让下一层函数来访问这些土地。而方法二把接下来想要遍历的土地放在栈里,然后在取出这些土地的时候访问它们。

访问每一片土地时,我们将对围绕它四个方向进行探索,找到还未访问的土地,加入到栈 stack 中;

另外,只要栈 stack 不为空,就说明我们还有土地待访问,那么就从栈中取出一个元素并访问。

class Solution {
public:
    int maxAreaOfIsland(vector<vector<int>>& grid) {
        int ans = 0;
        for (int i = 0; i != grid.size(); ++i) {
            for (int j = 0; j != grid[0].size(); ++j) {
                int cur = 0;
                stack<int> stacki;
                stack<int> stackj;
                stacki.push(i);
                stackj.push(j);
                while (!stacki.empty()) {
                    int cur_i = stacki.top(), cur_j = stackj.top();
                    stacki.pop();
                    stackj.pop();
                    if (cur_i < 0 || cur_j < 0 || cur_i == grid.size() || cur_j == grid[0].size() || grid[cur_i][cur_j] != 1) {
                        continue;
                    }
                    ++cur;
                    grid[cur_i][cur_j] = 0;
                    int di[4] = {0, 0, 1, -1};
                    int dj[4] = {1, -1, 0, 0};
                    for (int index = 0; index != 4; ++index) {
                        int next_i = cur_i + di[index], next_j = cur_j + dj[index];
                        stacki.push(next_i);
                        stackj.push(next_j);
                    }
                }
                ans = max(ans, cur);
            }
        }
        return ans;
    }
};

复杂度分析

时间复杂度:O(R×C)。其中 R 是给定网格中的行数,C 是列数。我们访问每个网格最多一次。

空间复杂度:O(R×C),栈中最多会存放所有的土地,土地的数量最多为 R×C 块,因此使用的空间为 O(R×C)。

方法三:广度优先搜索
算法

我们把方法二中的栈改为队列,每次从队首取出土地,并将接下来想要遍历的土地放在队尾,就实现了广度优先搜索算法。

class Solution {
public:
    int maxAreaOfIsland(vector<vector<int>>& grid) {
        int ans = 0;
        for (int i = 0; i != grid.size(); ++i) {
            for (int j = 0; j != grid[0].size(); ++j) {
                int cur = 0;
                queue<int> queuei;
                queue<int> queuej;
                queuei.push(i);
                queuej.push(j);
                while (!queuei.empty()) {
                    int cur_i = queuei.front(), cur_j = queuej.front();
                    queuei.pop();
                    queuej.pop();
                    if (cur_i < 0 || cur_j < 0 || cur_i == grid.size() || cur_j == grid[0].size() || grid[cur_i][cur_j] != 1) {
                        continue;
                    }
                    ++cur;
                    grid[cur_i][cur_j] = 0;
                    int di[4] = {0, 0, 1, -1};
                    int dj[4] = {1, -1, 0, 0};
                    for (int index = 0; index != 4; ++index) {
                        int next_i = cur_i + di[index], next_j = cur_j + dj[index];
                        queuei.push(next_i);
                        queuej.push(next_j);
                    }
                }
                ans = max(ans, cur);
            }
        }
        return ans;
    }
};

复杂度分析

时间复杂度:O(R×C)。其中 RR 是给定网格中的行数,CC 是列数。我们访问每个网格最多一次。

空间复杂度:O(R×C),队列中最多会存放所有的土地,土地的数量最多为R×C 块,因此使用的空间为 O(R×C)。

作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/max-area-of-island/solution/dao-yu-de-zui-da-mian-ji-by-leetcode-solution/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值