- 岛屿的最大面积
给定一个包含了一些 0 和 1 的非空二维数组 grid 。
一个 岛屿 是由一些相邻的 1 (代表土地) 构成的组合,这里的「相邻」要求两个 1 必须在水平或者竖直方向上相邻。你可以假设 grid 的四个边缘都被 0(代表水)包围着。
找到给定的二维数组中最大的岛屿面积。(如果没有岛屿,则返回面积为 0 。)
示例 1:
[[0,0,1,0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,0,0,1,1,1,0,0,0],
[0,1,1,0,1,0,0,0,0,0,0,0,0],
[0,1,0,0,1,1,0,0,1,0,1,0,0],
[0,1,0,0,1,1,0,0,1,1,1,0,0],
[0,0,0,0,0,0,0,0,0,0,1,0,0],
[0,0,0,0,0,0,0,1,1,1,0,0,0],
[0,0,0,0,0,0,0,1,1,0,0,0,0]]
对于上面这个给定矩阵应返回 6。注意答案不应该是 11 ,因为岛屿只能包含水平或垂直的四个方向的 1 。
示例 2:
[[0,0,0,0,0,0,0,0]]
对于上面这个给定的矩阵, 返回 0。
注意: 给定的矩阵grid 的长度和宽度都不超过 50。
方法一:深度优先搜索
算法
我们想知道网格中每个连通形状的面积,然后取最大值。
如果我们在一个土地上,以 4 个方向探索与之相连的每一个土地(以及与这些土地相连的土地),那么探索过的土地总数将是该连通形状的面积。
为了确保每个土地访问不超过一次,我们每次经过一块土地时,将这块土地的值置为 0。这样我们就不会多次访问同一土地。
class Solution {
int dfs(vector<vector<int>>& grid, int cur_i, int cur_j) {
if (cur_i < 0 || cur_j < 0 || cur_i == grid.size() || cur_j == grid[0].size() || grid[cur_i][cur_j] != 1) {
return 0;
}
grid[cur_i][cur_j] = 0;
int di[4] = {0, 0, 1, -1};
int dj[4] = {1, -1, 0, 0};
int ans = 1;
for (int index = 0; index != 4; ++index) {
int next_i = cur_i + di[index], next_j = cur_j + dj[index];
ans += dfs(grid, next_i, next_j);
}
return ans;
}
public:
int maxAreaOfIsland(vector<vector<int>>& grid) {
int ans = 0;
for (int i = 0; i != grid.size(); ++i) {
for (int j = 0; j != grid[0].size(); ++j) {
ans = max(ans, dfs(grid, i, j));
}
}
return ans;
}
};
复杂度分析
时间复杂度:O(R×C)。其中 R 是给定网格中的行数,C 是列数。我们访问每个网格最多一次。
空间复杂度:O(R×C),递归的深度最大可能是整个网格的大小,因此最大可能使用 O(R×C) 的栈空间。
方法二:深度优先搜索 + 栈
算法
我们可以用栈来实现深度优先搜索算法。这种方法本质与方法一相同,唯一的区别是:
方法一通过函数的调用来表示接下来想要遍历哪些土地,让下一层函数来访问这些土地。而方法二把接下来想要遍历的土地放在栈里,然后在取出这些土地的时候访问它们。
访问每一片土地时,我们将对围绕它四个方向进行探索,找到还未访问的土地,加入到栈 stack 中;
另外,只要栈 stack 不为空,就说明我们还有土地待访问,那么就从栈中取出一个元素并访问。
class Solution {
public:
int maxAreaOfIsland(vector<vector<int>>& grid) {
int ans = 0;
for (int i = 0; i != grid.size(); ++i) {
for (int j = 0; j != grid[0].size(); ++j) {
int cur = 0;
stack<int> stacki;
stack<int> stackj;
stacki.push(i);
stackj.push(j);
while (!stacki.empty()) {
int cur_i = stacki.top(), cur_j = stackj.top();
stacki.pop();
stackj.pop();
if (cur_i < 0 || cur_j < 0 || cur_i == grid.size() || cur_j == grid[0].size() || grid[cur_i][cur_j] != 1) {
continue;
}
++cur;
grid[cur_i][cur_j] = 0;
int di[4] = {0, 0, 1, -1};
int dj[4] = {1, -1, 0, 0};
for (int index = 0; index != 4; ++index) {
int next_i = cur_i + di[index], next_j = cur_j + dj[index];
stacki.push(next_i);
stackj.push(next_j);
}
}
ans = max(ans, cur);
}
}
return ans;
}
};
复杂度分析
时间复杂度:O(R×C)。其中 R 是给定网格中的行数,C 是列数。我们访问每个网格最多一次。
空间复杂度:O(R×C),栈中最多会存放所有的土地,土地的数量最多为 R×C 块,因此使用的空间为 O(R×C)。
方法三:广度优先搜索
算法
我们把方法二中的栈改为队列,每次从队首取出土地,并将接下来想要遍历的土地放在队尾,就实现了广度优先搜索算法。
class Solution {
public:
int maxAreaOfIsland(vector<vector<int>>& grid) {
int ans = 0;
for (int i = 0; i != grid.size(); ++i) {
for (int j = 0; j != grid[0].size(); ++j) {
int cur = 0;
queue<int> queuei;
queue<int> queuej;
queuei.push(i);
queuej.push(j);
while (!queuei.empty()) {
int cur_i = queuei.front(), cur_j = queuej.front();
queuei.pop();
queuej.pop();
if (cur_i < 0 || cur_j < 0 || cur_i == grid.size() || cur_j == grid[0].size() || grid[cur_i][cur_j] != 1) {
continue;
}
++cur;
grid[cur_i][cur_j] = 0;
int di[4] = {0, 0, 1, -1};
int dj[4] = {1, -1, 0, 0};
for (int index = 0; index != 4; ++index) {
int next_i = cur_i + di[index], next_j = cur_j + dj[index];
queuei.push(next_i);
queuej.push(next_j);
}
}
ans = max(ans, cur);
}
}
return ans;
}
};
复杂度分析
时间复杂度:O(R×C)。其中 RR 是给定网格中的行数,CC 是列数。我们访问每个网格最多一次。
空间复杂度:O(R×C),队列中最多会存放所有的土地,土地的数量最多为R×C 块,因此使用的空间为 O(R×C)。
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/max-area-of-island/solution/dao-yu-de-zui-da-mian-ji-by-leetcode-solution/