数据挖掘学习步骤:
学习的目标(循序渐进):
1、爬虫
2、数据处理工具使用(numpy、scipy、pandas、scikit-Learn、gensim)
3、数据预处理(清洗、集成、变换、规约https://weixin_42859280/article/details/93492903?ops_request_misc=%7B%22request%5Fid%22%3A%22158244794219725222437994%22%2C%22scm%22%3A%2220
94&biz_id=0&utm_source=distribute.pc_search_result.none-task.
4、数据库使用(spark、hadoop、ES、SQL)
5、机器学习了解
6、挖掘建模(分类预测、聚类、关联规则等)
7、自然语言处理
推荐书籍:
利用python进行数据分析(第二版)
python数据分析与挖掘实战
机器学习python实践
机器学习实战
python自然语言处理实战
掌握NLP/ML/DL领域常用的算法模型原理,有实际NLP相关项目及应用经验3.
在自然语言处理/机器学习/信息检索的主要会议/期刊(ACL/SIGIR/CIKM/ICML/AAAI等)发表过一篇以上论文
优秀的编程能力,熟悉TF/Pytorch等深度学习工具,熟悉大数据处理,对分布式计算有相关经验
有良好的自我学习能力,及自驱力