数据挖掘学习笔记01——数据挖掘的基本流程

本文详细介绍了数据挖掘的概念、用途及常用方法论,包括分类、聚类、回归和关联问题。强调了数据挖掘在业务理解、数据理解、数据准备、建模、评估和部署等步骤中的重要性。还提到了Python数据结构、数据处理工具和数据学习资源。文章探讨了如何处理干净数据、选择合适算法及评估模型效果,并提醒关注模型在实际业务中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

笔记来源于系统学习以下课程:
B站最完整系统的Python数据分析-数据挖掘教程,72小时带你快速入门,轻松转行(月入10W+数据分析师强烈推荐!)

数据挖掘01——什么是数据挖掘,能解决什么问题

  1. 什么是数据挖掘?
    数据挖掘——寻找数据中隐含的知识,并用于产生商业价值

  2. 为什么要做数据挖掘?
    在这里插入图片描述

  3. 数据挖掘的产生动因?
    在这里插入图片描述

  4. 数据挖掘有什么用处?
    (1)分类问题——对已知类别的数据进行学习,为新的内容标注一个类别(如:新闻分类等)
    (2)聚类问题——类别预先不清楚,比较适合一些不确定的类别场景(如:树叶类别聚类)
    (3)回归问题——最大特点:生成的结果是连续的(如:回归预测房价)
    (4)关联问题——最常见的一个场景:推荐(如:购物推荐图)

  • 数据学习也是有方法论的!
    数据挖掘经过了数十年的发展和无数专家学者的研究,有很多人提出了完整的流程框架
    应用最多的方法论:
    CRISP-DM(Cross-industry Standard Process for Data Mining,跨行业数据挖掘标准流程)
  1. 数据挖掘怎么做?
    在这里插入图片描述
    • 业务理解(Business Understanding)—— 理解你的数据挖掘要解决什么业务问题在这里插入图片描述
      必须从商业或者从业务的角度去了解项目的要求和最终目的
      去分析整个问题涉及的资源、局限、设想,甚至是风险、意外等情况
      从业务出发,到业务中去

    • 数据理解(Data Understanding)
      在这里插入图片描述
      数据理解阶段的重点:
      在业务理解的基础上,对掌握的数据要有一个清晰、明确的认识
      注意:数据理解和业务理解是相辅相成的

    • 数据准备(Data Preparation)
      在这里插入图片描述
      数据准备是基于原始数据,去构建数据挖掘模型所需的数据集的所有工作,包括数据收集、数据清洗、数据补全、数据整合、数据转换、特征提取等一系列动作。

    • 构建模型(Modeling)
      也叫做训练模型,重点解决技术方面的问题
      选用各种各样的算法模型来处理数据,让模型学习数据的规律,并产出模型
      如果有多重技术要适用,在这一任务中,对于每一个要适用的技术要分别对待
      比如:SVM算法只能输入数值型的数据

    • 模型评估(Evaluation)
      模型的效果如何,能否满足业务需求
      需要适用各种评估手段、评估指标甚至是让业务人员一起参与进来,彻底地评估模型
      在评估之后会有两种情况:
      (1) 评估通过,进入到上线部署阶段
      (2) 评估不通过,要反过来再进行迭代更新

    • 模型部署(Deployment)
      解决一些实际的问题,如:
      长期运行的模型是否有足够的机器来支撑,数据量以及并发程度会不会造成部署的服务出现问题

数据挖掘02——Python的数据结构和基本用法

这部分直接跳过啦~

数据挖掘03——工欲善其事必先利其器 扩展包与Python环境

这里关于安装Anaconda的安装和配置就跳跳跳过啦~

dir() # 查看模块中所包含的工具
help() # 展示模块中所有方法的说明

标准库:
在这里插入图片描述
第三方库——基础模块:
在这里插入图片描述在这里插入图片描述
深度学习平台:
在这里插入图片描述

数据挖掘04——数据学习网站

  • 数据竞赛网站:Kaggle / 天池

  • 数据集网站:ImageNet / Open Images

  • 各领域统计数据:统计局 / 政府机构 / 公司财报

数据挖掘05——数据挖掘的具体步骤

在这里插入图片描述
在这里插入图片描述

数据挖掘06——如何处理出完整干净的数据?

  1. 找到数据
    需要掌握一些数据库的适用技巧
    关系型数据库MySQL、大数据使用的Hbase、HIVE、搜索引擎数据库ES、内存数据库Redis
    图数据库,如NEO4J或者JanusGraph等
    还要与各部分协商以获取数据

  2. 数据探索
    要对数据进行分析、预处理以及转换等基础工作
    以构建出更加贴合你所要预测结果的特征
    大牛把这个环节叫做数据变多或者数据升维

  3. 数据清洗
    处理扩展后的数据、解决所发现的问题,同时又要顾及处理后的数据是否适合应用于下一个步骤

    • 缺失值的处理
      在这里插入图片描述

    • 异常值的处理
      在这里插入图片描述在这里插入图片描述

    • 数据偏差的处理
      在这里插入图片描述
      在这里插入图片描述

    • 数据标准化
      在这里插入图片描述

    • 特征选择
      在这里插入图片描述
      在这里插入图片描述

    • 构建训练集和测试集(有些需要验证集)
      在这里插入图片描述
      在这里插入图片描述

  4. 思想准备
    在这里插入图片描述

数据挖掘07——数据建模:该如何选择一个适合我需求的算法?

建议观看视频 数据建模:该如何选择一个适合我需求的算法?

数据挖掘08——数据评估:如何确认我们的模型已经达标?

建议观看视频 数据评估:如何确认我们的模型已经达标?
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

数据挖掘09——数据应用:我们的模型是否可以解决业务需求?

建议观看视频 数据应用:我们的模型是否可以解决业务需求?
在这里插入图片描述

这篇笔记主要介绍了Pandas模块的基本操作和使用方法。Pandas是Python中一个用于数据分析和处理的常用库,提供了高效的数据结构和数据分析工具,是进行数据处理和数据挖掘的重要工具之一。 一、Pandas数据结构 Pandas主要有两种数据结构:Series和DataFrame。 1. Series Series是一种类似于一维数组的对象,由一组数据和一组与之相关的标签(即索引)组成。Series的创建方式如下: ```python import pandas as pd # 通过列表创建Series s = pd.Series([1, 3, 5, np.nan, 6, 8]) # 通过字典创建Series s = pd.Series({'a': 1, 'b': 2, 'c': 3}) ``` 2. DataFrame DataFrame是一种二维表格数据结构,由一组数据和一组行索引和列索引组成。DataFrame的创建方式有很多种,最常用的是通过字典创建。例如: ```python import pandas as pd data = {'name': ['Tom', 'Jerry', 'Mike'], 'age': [18, 20, 22], 'gender': ['M', 'M', 'F']} df = pd.DataFrame(data) ``` 二、Pandas的基本操作 1. 数据读取 Pandas可以读取多种格式的数据文件,如CSV、Excel、SQL等。常用的读取CSV文件的方式如下: ```python import pandas as pd df = pd.read_csv('data.csv') ``` 2. 数据预处理 数据预处理是数据挖掘中非常重要的一部分,Pandas提供了很多方便的函数和方法来进行数据清洗和转换。常用的数据预处理函数和方法有: - 处理缺失值 ```python # 判断是否存在缺失值 df.isnull() # 删除缺失值 df.dropna() # 填充缺失值 df.fillna(value) ``` - 处理重复值 ```python # 删除重复值 df.drop_duplicates() ``` - 数据转换 ```python # 数据类型转换 df.astype() # 数据替换 df.replace() ``` 3. 数据分析 Pandas提供了各种数据分析和处理的方法和函数,常用的包括: - 统计函数 ```python # 计算平均值 df.mean() # 计算标准差 df.std() # 计算最大值和最小值 df.max(), df.min() ``` - 排序 ```python # 按照某列排序 df.sort_values(by='column_name') ``` - 数据聚合 ```python # 对某列数据进行分组求和 df.groupby('column_name').sum() ``` 以上是Pandas模块的基础内容,还有很多高级用法和技巧需要进一步学习和掌握。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值