早在进入隐私计算领域之前,作为香港科技大学副教授、智能网络与系统实验室主任的陈凯就已经在研究高性能算力、网络与数据中心,并已经成为该领域知名专家。事实上,在人工智能与大数据时代,更高性能算力的不断突破是至关重要的。
正如GPU是人工智能发展的核心利器,高性能算力也是隐私计算能否从发生量变到质变的关键钥匙。陈凯教授认为,没有英伟达等企业对GPU的死磕,人工智能深度学习发展的不会这么快;而算力性能上不去,隐私计算处理更多大规模的数据以及规模化发展是很难的。
2018年,对陈凯教授及其团队而言,无疑是一个非常关键的时间节点——星云Clustar诞生的契机出现。由于陈凯教授在数据中心网络、机器学习系统等方面成绩斐然,很多投资者开始向他提出商议:以团队的研究成果为基础进行创业。陈凯教授本人也是“产学研”结合的实践者,在创办星云Clustar之前,其数据中心网络领域的研究成果就曾与华为、腾讯和微软等企业进行过合作。
“创办星云Clustar不单是因为我觉得这样有更大的自由度,可以使大家可以拿出最大的激情做自己想做的研究。更是考虑到,把在高性能网络领域的研究真正转化为生产力才有更大的实践意义。”回想起这段经历,陈凯教授总结道。
作为星云Clustar创始人,陈凯教授对星云Clustar的期望就是坚定做以算力为核心的隐私计算技术提供商,研发隐私计算的加速引擎,推动隐私计算行业的快速扩展与规模化。
陈凯教授介绍,无论是多方安全计算、联邦学习、同态加密还是秘密共享等隐私计算技术,搭建的隐私计算平台在真正的生产应用中都对算力,即计算和网络通信,有越来越高的需求。新的一年,星云Clustar将在底层算力性能研发的基础上,与隐私计算、云计算等行业内头部企业深度合作,共同深度赋能产业。
在陈凯教授的带领下,其团队在2021年取得了许多成就。在场景落地方面,与某国有银行达成合作,完成全国首个国有大行隐私计算场景应用;作为粤港澳大湾区科技创新企业代表,与南京市就隐私计算与数据交易平台项目达成合作;依托算力解决方案实现联邦数据网络算力加速50-70倍算力提升,落地行业最大联邦学习应用场景 。
此外,还先后加入全球最大联邦学习开源社区FATE技术指导委员会(TSC Board 单位),大数据技术标准推进委员会(CCSA TC601)以及深圳市软件行业协会;作为IEEE联邦学习标准工作组秘书长深度参与的联邦学习首个国际标准正式发布;成为北京金融科技产业联盟成员单位;成为隐私计算联盟成员单位。
算力智库注意到,截至目前,星云Clustar专利申请量达到151 项,作为独立技术公司成