
数值分析
爱你是长久之计~
这个作者很懒,什么都没留下…
展开
-
数值分析线性方程组迭代法之SOR迭代法详解及其C语言算法实现
SOR迭代法,又名逐次超松弛迭代法,与Jacobi迭代法和Guass-Seidel迭代法相比,收敛速度更快其原理如下(想详细了解,可以点击这里数值分析(东北大学)):1.构造迭代式时,要加上一个大于0的松弛因子w,这样可以加快其收敛速度2.根据上式进行分析:3.得到迭代式:得到迭代式以后,就可以选择合适的初始解进行计算了,由于迭代法的收敛性与初始向量无关,与系数矩阵的谱半径有关,所以在计算时的初始解向量不妨设为0向量即可代码实现1.初始化:double** init_Matrix(int原创 2020-05-25 17:36:07 · 9573 阅读 · 0 评论 -
解线性方程组迭代法之Guass-Seidel迭代法及其算法实现
上篇给大家讲解了迭代法中的Jacobi迭代法,这篇将给大家讲解一个收敛更快的方法:Guass-Seidel迭代法,在方法上,Guass-Seidel迭代法和Jacobi迭代法大同小异,它的迭代式与Jacobi迭代法的差不多,唯一的差别就是,在Jacobi迭代法中,我们是按照顺序依次求X1k+1,X2k+1,…,Xnk+1,即每个分量都由前一次迭代的Xik计算得到,而在这个过程中,我们求Xnk+1...原创 2020-03-07 19:59:37 · 1649 阅读 · 0 评论 -
解线性方程组迭代法之Jacobi迭代法及其算法实现
在上一篇博客里面,笔者介绍了解线性方程组的LU分解法,这篇来介绍一个新的方法,迭代法.解线性方程组的迭代法有多种,其中就有Jacobi迭代法,它的原理是什么呢?有如下的线性方程组Ax=b,可将其变形为=>Mx=Nx+b=>x=M-1Nx+M-1b,设B=M-1N=M-1(M-A)=E-M-1A,f=M-1b,即可得到迭代式:X(k+1)=Bx(k)+f,这里我们只需要设置一个初始的x向...原创 2020-03-07 19:15:14 · 6499 阅读 · 0 评论 -
解线性方程组的直接方法:LU分解法及其C语言算法实现
在上一篇博客里面,笔者介绍了解线性方程组的列主元Guass消元法,这篇将介绍LU分解法及其算法实现.什么是LU分解?对于一个线性方程组Ax=b,其中A是非奇异系数矩阵,b是线性方程组右端项,在列主元Guass消元法里面我们知道,最后的系数矩阵A将变成一个上三角矩阵,并且是通过一系列的行变换而来的,设最后得到的上三角矩阵为U,结合高等代数的知识,一个矩阵左乘一个初等矩阵,相当于进行一次行变换,因...原创 2020-03-07 17:37:43 · 4928 阅读 · 0 评论 -
利用列主元高斯消元法求线性方程组及其算法实现
学过线性代数的朋友都知道有多种方法能用来解线性方程组,今天我给大家介绍的方法是,列主元高斯消元法及其算法实现如何解线性方程组?相信大家在初中就学过解方程组,如下面做这个题目我们求解的时候,就是用消元的方法,即通过两个式子相减,可以消去一个未知数,进行两次就可以得到两个只含相同未知数的方程,这个时候再将这两个式子相减,又可以消去未知数,接下来的步骤就是求出一个未知数,然后代入先前的方程,可以...原创 2020-03-05 00:12:50 · 5587 阅读 · 0 评论