the real numbers in your answers should be given with three significant digits of accuracy aft

In this question, the real numbers in your answers should be given with three significant digits of accuracy after the decimal point.

The public health authorities of a small town have divided the population into three categories: covid-negative, covid-positive, and hospitalised. After performing regular, extensive tests, they have observed that in each successive week:

Among those who are negative, 95% remain so, 4% become positive, and 1% need to be hospitalised.

Among those who are positive, 75% recover and become negative, 20% stay positive, and 5% need to be hospitalised.

Among those who are hospitalised, 60% recover and become negative, 30% are released from hospital but remain positive, and 10% remain hospitalised.

(a) After representing the population in a given week as a column vector v=[n;p;h], where n,p, and h represent the number of people in the population who are negative, positive, and hospitalised respectively, write down a matrix M for which[n′,p′,h′]=M[n;p;h], where[n′,p′,h′] represents the column vector of negative, positive, and hospitalised members of the population in the following week.

(b) Show that M is diagonalisable over R and write down its three eigenvalues, ordered in such a way that λ1>λ2>λ3.

© Write down eigenvectors v1,v2,v3 attached toλ1, λ2 and λ3 respectively.
(由留学作业帮www.homeworkhelp.cc整理编辑)
Step 1
Given:

The population has been divided into three categories: covid-negative, covid-positive, and hospitalized.

Among those who are negative, 95% remain so, 4% become positive, and 1% need to be hospitalized in the following week.

Among those who are positive, 75% recover and become negative, 20% stay positive, and 5% need to be hospitalized in the following week.

Among those who are hospitalized, 60% recover and become negative, 30% are released from hospital but remain positive, and 10% remain hospitalized in the following week.

(a) To construct: A matrix M such that n’p’h’T=MnphT, where v=nphT represents the population in a given week as a column vector, where n, p and h represent the number of people in the population who are negative, positive, and hospitalized respectively and where n’p’h’T represents the column vector of negative, positive, and hospitalized members of the population in the following week.

(b) To show: M is diagonalizable over ℝ

To determine: The three eigenvalues, arranged in descending order.

© To write: The eigenvectors attached to the eigen values respectively.

arrow_forward
Step 2
(a.)

Let n, p and h represent the number of people in the population who are negative, positive, and hospitalized in a given week respectively.

Similarly, let n’, p’ and h’ represent the number of people in the population who are negative, positive, and hospitalized in the following week respectively.

It is given that:

Among those who are negative, 95% remain so, 4% become positive, and 1% need to be hospitalized in the following week.

Among those who are positive, 75% recover and become negative, 20% stay positive, and 5% need to be hospitalized in the following week.

Among those who are hospitalized, 60% recover and become negative, 30% are released from hospital but remain positive, and 10% remain hospitalized in the following week.

This can be written as,

n’=95%n+75%p+60%h

p’=4%n+20%p+30%h

h’=1%n+5%p+10%h

Simplifying,

n’=0.95n+0.75p+0.6h

p’=0.04n+0.2p+0.3h

h’=0.01n+0.05p+0.1h

In matrix form, we can write,

n’p’h’T=0.950.750.60.040.20.30.010.050.1nphT

So, the required matrix is,

M=0.950.750.60.040.20.30.010.050.1

arrow_forward
Step 3
(b.)

As determined previously, M=0.950.750.60.040.20.30.010.050.1

Evaluating the eigen values, we have,

0.95-x0.750.60.040.2-x0.30.010.050.1-x=0

Solving,

0.95-x0.2-x0.1-x-0.050.3-0.750.040.1-x-0.30.01+0.60.040.05-0.010.2-x=00.95-x0.02-0.3x+x2-0.015-0.750.004-0.04x-0.003+0.60.002-0.002+0.01x=00.00475-0.285x+0.95x2-0.005x+0.3x2-x3-0.00075+0.03x+0.006x=0-x3+0.95x2+0.3x2-0.285x-0.005x+0.03x+0.006x+0.00475-0.00075=0-x3+1.25x2-0.254x+0.004=0x3-1.25x2+0.254x-0.004=0

So, x3-1.25x2+0.254x-0.004=0

Factorizing, we have,

x-1x-0.01718x-0.23282=0

Therefore, the eigen values are:

λ1=1, λ2=0.23282 and λ3=0.01718

Since M, which is a 3×3 matrix has three distinct eigen values, then it follows that M is diagonalizable.

arrow_forward
Step 4
(c.)

As determine previously,

M=0.950.750.60.040.20.30.010.050.1

The eigen values:

λ1=1, λ2=0.23282 and λ3=0.01718

Let v=nphT be an eigen vector associated with the eigen value λ.

Then, we have,

Mv=λv

This gives the equations:

0.95n+0.75p+0.6h=λn

0.04n+0.2p+0.3h=λp

0.01n+0.05p+0.1h=λh

Now, put λ1=1 in the above equations to get,

0.95n+0.75p+0.6h=n

0.04n+0.2p+0.3h=p

0.01n+0.05p+0.1h=h

Solving the first equation,

0.95n+0.75p+0.6h=n0.75p+0.6h=0.05nn=15p+12h

So, n=15p+12h

Solving the second equations,

0.04n=0.8p-0.3hn=20p-7.5h

So, n=20p-7.5h

Multiplying n=15p+12h with 4 and n=20p-7.5h with 3, we have,

4n=60p+48h

3n=60p-22.5h

Subtracting the equations,

n=70.5h

Putting n=70.5h in n=15p+12h to get,

70.5h=15p+12h15p=58.5hp=3.9h

So, p=3.9h

Put n=70.5h and p=3.9h in 0.01n+0.05p+0.1h=h to get,

0.705h+0.195h+0.1h=hh=h

So, the third equation is satisfied for any h.

Now, let h=10.

Put h=10 in n=70.5h and p=3.9h to get,

n=705 and p=39

So, the eigen vector corresponding to λ1=1 is given as, v1=7053910T

arrow_forward
Step 5
As determined previously, the equations to determine the eigen vectors are:

0.95n+0.75p+0.6h=λn

0.04n+0.2p+0.3h=λp

0.01n+0.05p+0.1h=λh

Now, put λ2=0.23282 in the above equations to get,

0.95n+0.75p+0.6h=0.23282n

0.04n+0.2p+0.3h=0.23282p

0.01n+0.05p+0.1h=0.23282h

Solving,

0.71718n+0.75p+0.6h=0

0.04n-0.03282p+0.3h=0

0.01n+0.05p-0.13282h=0

Multiplying the second equation by 2 to get,

0.08n-0.06564p+0.6h=0

Subtracting the first equation from this, we have,

0.08282n-0.81564p=00.08282n=0.81564pn≈9.8483p

So, n≈9.8483p

Put n≈9.8483p in 0.04n-0.03282p+0.3h=0 to get,

0.3939p-0.03282p+0.3h=00.36111p+0.3h=00.3h=-0.36111ph=-1.2037p

So, h=-1.2037p

Now, put p=1 in n≈9.8483p and h=-1.2037p to get,

n≈9.8483 and h=-1.2037

Then, the eigen vector corresponding to λ2=0.23282 is given as, v2=9.84831-1.2037T.

arrow_forward
Step 6
As determined previously, the equations to determine the eigen vectors are:

0.95n+0.75p+0.6h=λn

0.04n+0.2p+0.3h=λp

0.01n+0.05p+0.1h=λh

Now, put λ3=0.01718 in the above equations to get,

0.95n+0.75p+0.6h=0.01718n

0.04n+0.2p+0.3h=0.01718p

0.01n+0.05p+0.1h=0.01718h

Simplifying the first and second equation,

0.93282n+0.75p+0.6h=0

0.04n+0.18282p+0.3h=0

Multiplying the second equation by 2 and then subtracting from the first equation to get,

0.85282n+0.38436p=00.38436p=-0.85282np≈-2.2188n

So, p≈-2.2188n

Put p≈-2.2188n in 0.93282n+0.75p+0.6h=0 to get,

0.93282n-1.6641n+0.6h=0-0.73128n+0.6h=00.6h=0.73128nh=1.2188n

So, h=1.2188n

Put n=1 in p≈-2.2188n and h=1.2188n to get,

p≈-2.2188 and h=1.2188

Then, the eigen vector corresponding to λ3=0.01718 is given as v3=1-2.21881.2188T.

arrow_forward
Step 7
Answer:

(a.) It has been determined that the required matrix is,

M=0.950.750.60.040.20.30.010.050.1

(b.) It has been shown that M is diagonalizable in ℝ. It has also been determined that, the eigen values are:

λ1=1, λ2=0.23282 and λ3=0.01718

(c.) It has been determined that:

The eigen vector corresponding to λ1=1 is given as, v1=7053910T

The eigen vector corresponding to λ2=0.23282 is given as, v2=9.84831-1.2037T.

The eigen vector corresponding to λ3=0.01718 is given as v3=1-2.21881.2188T.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值